Анализ гармонических колебаний в простейших радиотехнических цепях. Гоноровский И. С. Радиотехнические цепи и сигналы. Учебник для вузов. в преобразовании Фурье


Издание третье, переработанное и дополненное

Допущено Министерством высшего и среднего специального образования СССР в качестве учебника для студентов радиотехнических специальностей вузов

МОСКВА «СОВЕТСКОЕ РАДИО» 1977

Книга является учебником по курсу «Радиотехнические цепи и сигналы» для вузов радиотехнической специальности. В связи с введением новой программы этого курса данное издание коренным образом переработано и дополнено следующими новыми разделами: дискретная и цифровая обработка сигналов; аппроксимация процессов и характеристик функциями Уолша; синтез радиотехнических цепей.

Особое внимание уделено разделам, посвященным статистическим явлениям в радиотехнических цепях. Методически переработаны разделы по спектральному и корреляционному анализу детерминированных и случайных сигналов, а также по теории их преобразования в линейных, параметрических и нелинейных устройствах.

Хотя книга предназначена для студентов радиотехнических факультетов вузов, она может быть также полезна широкому кругу специалистов, работающих в области радиоэлектроники и в смежных областях науки и техники.

Гоноровский И. С. Радиотехнические цепи и сигналы. Учебник для вузов. Изд. 3-е, перераб. и доп. М., «Сов. радио», 1977, 608 с.

Предисловие к третьему изданию

Глава 1. ВВЕДЕНИЕ
1.1. Основные области применения радиотехники
1.2. Передача сигналов на расстояние. Особенности распространения радиоволн и используемые в радиотехнике частоты
1.3. Основные радиотехнические процессы
1.4. Аналоговые, дискретные и цифровые сигналы и цепи
1.5. Радиоцепи и методы их анализа
1.6. Проблема помехоустойчивости канала связи
1.7. Задачи и содержание курса

Глава 2. СИГНАЛЫ
2.1. Общие замечания
2.2. Разложение произвольного сигнала по заданной системе функций
2.3. Гармонический анализ периодических колебаний
2.4. Спектры простейших периодических колебаний
2.5. Распределение мощности в спектре периодического колебания
2.6. Гармонический анализ непериодических колебаний
2.7. Некоторые свойства преобразования Фурье
2.8. Распределение энергии в спектре непериодического колебания
2.9. Примеры определения спектров непериодических колебаний
2.10. Соотношение между длительностью сигнала и шириной его спектра
2.11. Бесконечно короткий импульс с единичной площадью (дельта-функция)
2.12. Спектры некоторых неинтегрируемых функций
2.13. Представление сигналов на плоскости комплексной переменной
2.14. Представление сигналов с ограниченной частотной полосой в виде ряда Котельникова
2.15. Теорема отсчетов в частотной области
2.16. Корреляционный анализ детерминированных сигналов
2.17. Соотношение между корреляционной функцией и спектральной характеристикой сигнала
2.18. Когерентность

Глава 3. РАДИОСИГНАЛЫ
3.1. Общие определения
3.2. Радиосигналы с амплитудной модуляцией
3.3. Частотный спектр амплитудно-модулированното сигнала
3.4. Угловая модуляция. Фаза и мгновенная частота колебания
3.5. Спектр колебания при угловой модуляции. Общие соотношения
3.6. Спектр колебания при гармонической угловой модуляции
3.7. Спектр радиоимпульса с частотно-модулированным заполнением
3.8. Спектр колебания при смешанной амплитудно-частотной модуляции
3.9. Огибающая, фаза и частота узкополосного сигнала
3.10. Аналитический сигнал
3.11. Корреляционная функция модулированного колебания
3.12. Дискретизация узкополосного сигнала

Глава 4. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ СИГНАЛОВ
4.1. Общие определения случайных процессов
4.2. Виды случайных процессов. Примеры
4.3. Спектральная плотность мощности случайного процесса
4.4. Соотношение между энергетическим спектром и корреляционной функцией случайного процесса
4.5. Взаимно-корреляциониая функция и взаимный энергетический спектр двух случайных процессов
4.6. Узкополосный случайный процесс
4.7. Колебание, модулированное по амплитуде случайным процессом
4.8. Колебание, модулированное по фазе случайным процессом. Плотность вероятности

Глава 5. ЛИНЕЙНЫЕ РАДИОЦЕПИ С ПОСТОЯННЫМИ ПАРАМЕТРАМИ
5.1. Вводные замечания
5.2. Определения и основные свойства активной цепи
5.3. Активный четырехполюсник как линейный усилитель
5.4. Транзисторный усилитель
5.5. Усилитель на электронной лампе
5.6. Апериодичесий усилитель
5.7. Резонансный усилитель
5.8. Обратная связь в активном четырехполюснике
5.9. Применение отрицательной обратной связи для улучшения характеристик усилителя
5.10. Устойчивость линейных активных цепей с обратной связью. Алгебраический критерий устойчивости
5.11. Частотные критерии устойчивости

Глава 6. ПРОХОЖДЕНИЕ ДЕТЕРМИНИРОВАННЫХ КОЛЕБАНИЙ ЧЕРЕЗ ЛИНЕЙНЫЕ ЦЕПИ С ПОСТОЯННЫМИ ПАРАМЕТРАМИ
6.1. Вводные замечания
6.2. Спектральный метод
6.3. Метод интеграла наложения
6.4. Прохождение дискретных сигналов через апериодический усилитель
6.5. Дифференцирование и интегрирование сигналов
6.6. Особенности анализа радиосигналов в избирательных цепях. Приближенный спектральный метод
6.7. Упрощение метода интеграла наложения (метод огибающей)
6.8. Прохождение радиоимпульса через резонансный усилитель
6.9. Линейные искажения колебания с непрерывной амплитудной модуляцией
6.10. Прохождение фазоманипулированного колебания через резонансную цепь
6.11. Прохождение частотно-манипулированного колебания через избирательную цепь
6.12. Прохождение частотно-модулированиого колебания через избирательные цепи

Глава 7. ПРОХОЖДЕНИЕ СЛУЧАЙНЫХ КОЛЕБАНИИ ЧЕРЕЗ ЛИНЕЙНЫЕ ЦЕПИ С ПОСТОЯННЫМИ ПАРАМЕТРАМИ
7.1. Преобразование характеристик случайного процесса
7.2. Характеристики собственных шумов в радиоэлектронных цепях
7.3. Дифференцирование случайной функции
7.4. Интегрирование случайной функции
7.5. Нормализация случайных процессов в узкополосных линейных цепях
7.6. Распределение суммы гармонических колебаний со случайными фазами

Глава 8. НЕЛИНЕЙНЫЕ ЦЕПИ И МЕТОДЫ ИХ АНАЛИЗА
8.1. Нелинейные элементы
8.2. Аппроксимация нелинейных характеристик
8.3. Воздействие гармонических колебаний на цепи с безынерционными нелинейными элементами
8.4. Нелинейное резонансное усиление
8.5. Умножение частоты
8.6. Амплитудное ограничение
8.7. Нелинейная цепь с фильтрацией постоянного тока (выпрямление)
8.8. Амплитудное детектирование
8.9. Частотное и фазовое детектирование
8.10. Преобразование частоты сигнала
8.11. Синхронное детектирование
8.12. Получение амплитудно-модулированных колебаний

Глава 9. АВТОГЕНЕРАТОРЫ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ
9.1. Автоколебательная система
9.2. Возникновение колебания в автогенераторе
9.3. Стационарный режим автогенератора. Баланс фаз
9.4. Мягкий и жесткий режимы самовозбуждения
9.5. Примеры схем автогенераторов
9.6. Нелинейное уравнение автогенератора
9.7. Приближенное решение нелинейного уравнения автогенератора
9.8. Автогенераторы с внутренней обратной связью
9.9. Автогенератор с линией задержки в цепи обратной связи
9.10. Действие гармонической ЭДС на цепи с положительной обратной связью. Регенерация
9.11. Действие гармонической ЭДС на автогенератор. Захватывание частоты
9.12. Угловая модуляция в автогенераторе
9.13. ЯС-генераторы

Глава 10. ЦЕПИ С ПЕРЕМЕННЫМИ ПАРАМЕТРАМИ
10.1. Общие характеристики цепей с переменными параметрами
10.2. Прохождение колебаний через линейные цепи с переменными параметрами. Передаточная функция
10.3. Модуляция как параметрический процесс
10.4. Определение импульсной характеристики параметрической цепи
10.5. Энергетические соотношения в цепи с нелинейным реактивным элементом при гармонических колебаниях
10.6. Принцип параметрического усиления колебаний
10.7. Схема замещения емкости или индуктивности, изменяющихся по гармоническому закону
10.8. Одноконтурный параметрический усилитель
10.9. Двухчастотный параметрический усилитель
10.10. Преобразование частоты с помощью нелинейного реактивного элемента
10.11. Свободные колебания в контуре с периодически изменяющейся емкостью
10.12. Параметрические генераторы

Глава 11. ВОЗДЕЙСТВИЕ СЛУЧАЙНЫХ КОЛЕБАНИЙ НА НЕЛИНЕЙНЫЕ И ПАРАМЕТРИЧЕСКИЕ ЦЕПИ
11.1. Общие замечания
11.2. Преобразование нормального процесса в безынерционных нелинейных цепях
11.3. Преобразование энергетического спектра в безынерционном нелинейном элементе
11.4. Воздействие узкополосного шума на амплитудный детектор
11.5. Совместное воздействие гармонического колебания и нормального шума на амплитудный детектор
11.6. Совместное воздействие гармонического колебания и нормального шума на частотный детектор
11.7. Взаимодействие гармонического колебания и нормального шума в амплитудном ограничителе с резонансной нагрузкой
11.8. Корреляционная функция и энергетический спектр случайного процесса в параметрической цепи
11.9. Влияние мультипликативной помехи на закон распределения сигнала

Глава 12. СОГЛАСОВАННАЯ ФИЛЬТРАЦИЯ СИГНАЛА НА ФОНЕ ПОМЕХ
12.1. Вводные замечания
12.2. Согласованная фильтрация заданного сигнала
12.3. Импульсная характеристика согласованного фильтра. Физическая осуществимость
12.4. Сигнал и помеха на выходе согласованного фильтра
12.5. Примеры построения согласованных фильтров
12.6. Формирование сигнала, сопряженного о заданным фильтром
12.7. Согласованная фильтрация заданного сигнала при небелом шуме
12.8. Фильтрация сигнала с неизвестной начальной фазой
12.9. Согласованная фильтрация комплексного сигнала

Глава 13. ДИСКРЕТНАЯ ОБРАБОТКА СИГНАЛОВ. ЦИФРОВЫЕ ФИЛЬТРЫ
13.1. Вводные замечания
13.2. Алгоритм дискретной свертки (во временной области)
13.3. Дискретные преобразования Фурье
13.4. Погрешность дискретизации сигналов конечной длительности
13.5. Дискретные преобразования Лапласа
13.6. Передаточная функция дискретного фильтра
13.7. Передаточная функция рекурсивного фильтра
13.8. Применение метода г-преобразования для анализа дискретных сигналов и цепей
13.9. z-преобразование временных функций
13.10. z-преобразование передаточных функций дискретных цепей
13.11. Примеры анализа дискретных фильтров на основе метода z-преобразования
13.12. Преобразование аналог - цифра. Шумы квантования
13.13. Преобразование цифра - аналог и восстановление континуального сигнала
13.14. Быстродействие арифметического устройотва цифрового фильтра. Шумы округления

Глава 14. ПРЕДСТАВЛЕНИЕ КОЛЕБАНИЙ НЕКОТОРЫМИ СПЕЦИАЛЬНЫМИ ФУНКЦИЯМИ
14.1. Введение
14.2. Ортогональные полиномы и функции непрерывного типа
14.3. Примеры применения непрерывных функций
14.4. Определение функций Уолша
14.5. Примеры применения функций Уолша
14.6 Взаимный спектр базисных функций двух различных ортогональных систем
14.7. Дискретные функции Уолша

Глава 15. ЭЛЕМЕНТА СИНТЕЗА ЛИНЕЙНЫХ РАДИОЦЕПЕЙ
15.1. Вводные замечания
15.2. Некоторые свойства передаточной функции четырехполюсника
15.3. Связь между амплитудно-частотной и фазочастотной характеристиками четырехполюсника
15.4. Представление четырехполюсника общего вида каскадным соединением элементарных четырехполюсников
15.5. Реализация типового звена второго порядка
15.6. Реализация фазокорректирующей цепи
15.7. Особенности синтеза четырехполюсника по заданной амплитудно-частотной характеристике
15.8. Синтез фильтра нижних частот. Фильтр Баттерворга
15.9. Фильтр Чебышева (нижних частот)
15.10. Синтез различных фильтров на основе исходного фильтра нижних частот
15.11. Чувствительность характеристик цепи к изменениям параметров элементов
15.12. Имитация индуктивности е помощью активной ДО-цепи. Гиратор
15.13. Некоторые особенности синтеза цифровых фильтров

Приложение 1. Сигнал с минимальным произведением длительности на полосу частот
Приложение 2. Корреляционная функция сигнала на плоскости время - частота
Список литературы
Условные обозначения
Предметный указатель

ПРЕДИСЛОВИЕ К ТРЕТЬЕМУ ИЗДАНИЮ

Общая направленность учебника по курсу «Радиотехнические цепи и сигналы», положенная в основу первых двух изданий, сохранена и в настоящем издании. Однако книга коренным образом переработана в связи с необходимостью введения новых разделов, отображающих современное развитие техники радиоцепей и сигналов.

Широкое распространение дискретных и цифровых радиоэлектронных систем не позволяет более ограничивать курс РТЦиС рамками только аналоговых цепей и сигналов.

Развитие техники интегральных микросхем, основанное на широком применении методов синтеза цепей, не позволяет ограничивать курс РТЦиС изучением только методов анализа цепей.

Наконец, стремительное проникновение статистических методов во все отрасли радиотехники и электроники требует более обстоятельного изучения свойств случайных сигналов и преобразования их радиоцепях.

В свете этих требований и в соответствии с новой программой курса РТЦиС в учебник включены новые главы: «Основные характеристики случайных сигналов» (гл. 4), «Прохождение случайных колебаний через линейные цепи с постоянными параметрами» (гл. 7), «Дискретная обработка сигналов. Цифровые фильтры» (гл. 13), «Представление колебаний некоторыми специальными функциями», включая функций Уолша (гл. 14), «Элементы синтеза линейных радиоцепей» (гл. 15). Заново написана гл. 5, посвященная теории линейных активных цепей с обратной связью.

Все остальные главы предыдущего издания подверглись методической переработке с учетом опыта преподавания курса РТЦиС и многочисленных замечаний, сделанных преподавателями радиотехнических специальностей вузов, а также многими радиоспециалистами.

Общепризнано, что наряду g усвоением необходимых знаний первостепенное значение имеет развитие у студентов навыков к самостоятельной творческой работе. В соответствии с решениями XXV съезда КПСС о развитии научно-исследовательской работы в высших учебных заведениях все шире практикуется приобщение студентов к научной работе. Поэтому автор стремился сочетать изложение основных сведений, рассчитанных на первоначальное изучение и обязательных для всех студентов радиотехнической специальности, с изложением некоторых дополнительных, более сложных материалов, рассчитанных на студентов с повышенной подготовкой. Такие разделы выделены петитом. Незначительные сокращения, которые могут потребоваться в зависимости от уровня общетеоретической подготовки студентов, нетрудно осуществить без нарушения последовательности и целостности изучения настоящего курса.

Автор выражает искреннюю благодарность преподавателям кафедры ОРТ Московского энергетического института проф. Федорову Н. Н., доцентам Баскакову С. И., Белоусовой И. В., ассистенту Богаткину В. И., доценту Жукову В. П., старшему преподавателю Ивановой Н. Н., доцентам Карташеву В. Г., Николаеву А. М., Поллаку Б. П., старшему преподавателю Штыкову В. В. за высококвалифицированное и подробное рецензирование рукописи этой книги. Большое число критических замечаний и ценных советов помогло существенно улучшить изложение всех глав учебника.

Неоценимую помощь в работе над рукописью оказали преподаватели, сотрудники и аспиранты кафедры радиотехники МАИ. Всем им автор выражает глубокую благодарность.

Скачать Гоноровский И. С. Радиотехнические цепи и сигналы . Учебник для вузов. Издание третье переработанное и дополненное. Москва, Издательство «Советское радио», 1977

Чтобы передать информацию от источника к потребителю, необходимо совершить ряд преобразований, которые и называются радиотехническими процессами.

1. Преобразование сообщения в электриче-

скую функцию. Это действие происходит в уст- ройствах, называемых преобразователями. Например, преобразование звукового давления p(t) в электрический ток i(t) происходит при по-

Рис. 1.1. Преобразователь

мощи микрофона, а преобразование изображения в потенциал – при помощи телевизионной пере-

дающей трубки. Полученный таким способом сигнал b(t) называется первич-

ным. Обозначение преобразователя представлено на рис. 1.1.

2. Генерирование гармонических колебаний. Данное преобразование про-

исходит в устройствах, называемых генераторами. В них мощность источника постоянного тока P0 преобразуется в мощность P1 гармонических колебаний.

Интересно отметить, что вся история развития радиотехники и связи – это ис- тория освоения все более высокочастотных диапазонов волн, включая и опти- ческий диапазон. Разработано множество генераторов, начиная от ламповых генераторов до оптических квантовых генераторов (ОКГ). Основное требова- ние, предъявляемое к таким генераторам, – высокая стабильность частоты.

3. Модуляция. Без этого процесса невозможно

было бы передавать сообщения, обычно состоящие из совокупности низкочастотных колебаний, на большие расстояния. С позиции курса «Теория электрических цепей» модулятор является шести-

полюсником, на входы которого подается первич-

ный сигнал b(t) и высокочастотное гармоническое

Рис. 1.2. Модулятор

колебание u(t) (рис. 1.2.). В результате возникает высокочастотный сигнал s(t),

один из параметров которого изменяется по закону b(t).

4. Детектирование. Данный процесс является

S(t) b(t)

Рис. 1.3. Детектор

Рис. 1.4. Усилитель

обратным процессу модуляции, с помощью которо- го выделяется передаваемое сообщение. Устройст- во, выполняющее такое преобразование, называется детектором, тип которого должен соответствовать способу модуляции (рис. 1.3).

5. Усиление. Назначение этого процесса –

увеличение мощности принимаемого сигнала с со- хранением его формы. Устройство, осуществляющее этот радиотехнический процесс, называется усили- телем (рис. 1.4).

Кроме перечисленных процессов в РЭА исполь-

зуются и другие: преобразование частоты, умноже-

ние и деление частоты, выпрямление и т. д. Но только пять вышеперечислен- ных радиотехнических процессов являются основными, т. к. именно они опре- деляют возможность передачи сообщений от источника к потребителю.

Каналом связи называется комплекс радиотехнических устройств, при

помощи которых передается и принимается информация, плюс среда между ними (рис. 1.5). В канал связи включены устройства, осуществляющие все ос- новные радиотехнические процессы, а также передающая и приемная антенны. В этом случае информация передается через свободное пространство, волновое сопротивление которого равно 377 Ом (радиоканал). Если сигнал передается по кабелю, то волновое сопротивление линии связи определяется типом кабеля, а вместо антенн применяются специальные согласующие устройства (проводной канал).

Комплекс устройств, с помощью которых формируется сигнал, и излу- чающая антенна (или согласующее устройство) образуют радиопередающее устройство (передатчик).

Приемная антенна (согласующее устройство) и устройства обработки сиг-

нала составляют радиоприемное устройство (приемник). Физическая среда, по

которой распространяется сигнал, называется линией связи. Таким образом, в зависимости от типа среды каналы связи могут быть проводными и беспровод- ными (радиоканалами).

7

Рис. 1.5. Структурная схема канала связи:

1 – источник сообщения, 2 – преобразователь, 3 – модулятор, 4 – автогенератор,

5 – усилитель радиосигнала, 6 – передающая антенна (согласующее устройство),

7 – линия связи, 8 – приемная антенна (согласующее устройство),

9 – частотно-избирательное устройство, 10 – усилитель радиосигнала, 11 – детектор,

12 – усилитель видеосигнала, 13 – получатель сообщения

В случае передачи нескольких сигналов по одной линии связи осуществля- ется так называемая многоканальная связь (рис. 1.6). При этом возникают проблемы с разделением каналов. В настоящее время широко применяются частотный, временной и адресный методы разделения каналов. Суть частот- ного метода заключается в том, что каждому сигналу отводится своя опреде- ленная полоса частот и выделение сигнала при этом производится специальны- ми фильтрами. Преимущество частотного метода – большое быстродействие, т. к. информация передается параллельным способом. Недостатком частотного метода является широкая полоса частот, необходимая для организации связи. При временном методе каждый сигнал передается по одной и той же полосе частот, но в разные интервалы времени. Данный метод предполагает наличие специального временного распределительного и синхронизирующего уст- ройств, что усложняет канал связи. При экономном использовании полосы час- тот, получаем проигрыш в быстродействии. В адресных системах связи каналы различаются по форме передаваемых сигналов.

В зависимости от вида организации связи возможны различные режимы связи. Если передача сообщений осуществляется в одном направлении от ис-

точника к получателю, то такой режим называется симплексным, например, передача данных с автоматической метеостанции. Режим связи, при котором обеспечивается возможность одновременной передачи сообщений в прямом и

обратном направлениях, называется дуплексным. Классический пример – теле- фонная связь. Режим связи, при котором обмен информацией осуществляется поочередно, называется полудуплексным, например, работа диктора в телеви-

зионной студии и журналиста на месте события.

Σ Линия св.

Рис. 1.6. Структурная схема многоканальной системы связи:

ИсN – источники сообщений, KN – каналы связи, Σ – сумматор,

ФN – фильтры приемного устройства, ДN – детекторы, АN – получатели сообщений

В реальных каналах связи по различным причинам возможно случайное воздействие на сигнал, которое называется помехой n(t). В результате такого воздействия ухудшается достоверность воспроизведения сообщения. Если входной сигнал приемного устройства z(t) является суммой полезного сигнала s(t) и помехи n(t), то помеха называется аддитивной, т. е. z(t) = s(t) + n(t). В случае представления входного сигнала в виде z(t) = k(t) · s(t), помеха назы- вается мультипликативной. В реальных каналах связи действуют как адди- тивные, так и мультипликативные помехи различного происхождения. Если же в канале связи помехи отсутствуют, то такой канал связи является идеальным каналом.

Министерством образования

Республики Беларусь

· Регистрационный № ТД-I.008/тип.

·

·

·

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАДИОТЕХНИКИ

по специальностям 1Радиоинформатика,

СОСТАВИТЕЛЬ:

Доцент кафедры радиотехнических устройств Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук, доцент

РЕЦЕНЗЕНТЫ:

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

«Теоретические основы радиотехники» - это одна из дисциплин, определяющая своим содержанием профессиональную подготовку инженеров по специальностям 1Радиоинформатика,Радиоэлектронная защита информации. Цель дисциплины состоит в изучении теоретических основ современной радиотехники, связанных с анализом радиотехнических сигналов и устройств, использовании полученных знаний в качестве основы при изучении последующих радиотехнических дисциплин.

Дисциплина «Теоретические основы радиотехники» предусматривает изучение теории детерминированных и случайных радиосигналов, принципов их получения и преобразования в радиотехнических устройствах, методов анализа линейных, нелинейных и параметрических цепей, схемного построения типовых устройств канала связи и других информационных систем , вопросов оптимальной и цифровой обработки сигналов. В дисциплине используются современные математические методы решения задач анализа радиотехнических сигналов и цепей. Задача дисциплины - сформировать такой объем теоретических и физических знаний, которые обеспечат понимание и последующее изучение основных проблем синтеза и анализа сложных радиотехнических систем, оценки их качества по различным критериям.

Типовая программа по дисциплине «Теоретические основы радиотехники» рассчитана на объем 170 учебных часов. Примерное распределение учебных часов по видам занятий: лекций - 102 часа, лабораторных и практических занятий - 68 часов.

В результате изучения дисциплины студенты должны

знать:

Математические модели сигналов, методы описания и анализа их свойств;

Методы анализа линейных, нелинейных и параметрических цепей;

Схемное построение и принципы работы типовых устройств радиотехнического канала связи;

Основные положения статистического анализа случайных сигналов;

Методы анализа процессов линейного и нелинейного преобразований случайных сигналов;

Элементы теории оптимальной линейной фильтрации;

Основы теории цифровой обработки сигналов;

уметь:

Классифицировать радиотехнические сигналы и устройства в системе различных показателей;

Решать задачи анализа сигналов и их преобразований с применением современного математического аппарата и ЭВМ;

Анализировать процесс функционирования радиотехнических устройств в различных режимах;

Синтезировать схемы оптимальных и цифровых фильтров;

Проводить экспериментальный анализ сигналов и процессов их обработки с использованием натурного моделирования и моделирования на ЭВМ, оформлять результаты экспериментов и формулировать соответствующие выводы;

приобрести навыки:

Решения задач спектрального и корреляционного анализа радиотехнических сигналов;

Применения ЭВМ для расчета спектральных и временных характеристик сигналов и основных параметров процесса их преобразований;

Проведения экспериментальных исследований радиотехнических сигналов и цепей.

Перечень дисциплин, на которых базируется дисциплина «Теоретические основы радиотехники»: высшая математика, теория вероятностей, физика, основы электротехники , электронные приборы, основы теории цепей.


ВВЕДЕНИЕ

Тематика дисциплины «Теоретические основы радиотехники», необходимость и особенности ее изучения, место в системе подготовки специалистов по радиоинформатике. Основные задачи радиотехники и области ее применения, тенденции развития. Назначение радиотехнических информационных систем, их структура, классификация, принципы функционирования. Классификация сигналов. Проблема помехоустойчивости. Развитие радиоэлектронной промышленности в Республике Беларусь.

Раздел 1. РАДИОТЕХНИЧЕСКИЕ СИГНАЛЫ

Тема 1.1. АНАЛИЗ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ

Математические модели и основные характеристики детерминированных сигналов. Векторное представление сигналов. Ортогональные сигналы и обобщенный ряд Фурье. Погрешность аппроксимации рядом Фурье.

Понятие спектра сигнала, необходимость его использования. Гармонический спектральный анализ и синтез периодических сигналов. Тригонометрическое и комплексное представление спектра периодического сигнала. Распределение мощности в спектре периодического сигнала.

Спектральный анализ непериодических сигналов. Основные свойства преобразования Фурье. Распределение энергии в спектре непериодического сигнала. Соотношение между длительностью сигнала и шириной его спектра. Связь между спектрами периодического и непериодического сигналов. Спектры испытательных сигналов: сигналов, описываемых дельта функцией и единичной функцией, гармонического сигнала.

Корреляционный анализ детерминированных сигналов. Связь между корреляционной и спектральной характеристиками сигнала. Дискретизация и восстановление сигналов по теореме отсчетов (теореме Котельникова). Ряд Котельникова. Принципы временного уплотнения каналов связи.

Тема 1.2. МОДУЛИРОВАННЫЕ СИГНАЛЫ

Необходимость применения модулированных колебаний. Виды модуляции. Сигналы с амплитудной модуляцией. Векторное представление и спектры сигналов с амплитудной модуляцией. Энергетические соотношения. Балансная и однополосная амплитудные модуляции.

Угловая модуляция. Сигналы с частотной (ЧМ) и фазовой (ФМ) модуляциями. Векторное представление и спектры сигналов с ЧМ и ФМ. Энергетические соотношения. Сравнительный анализ амплитудной, частотной и фазовой модуляций. Радиоимпульс с частотной модуляцией, его свойства и основные характеристики.

Сигналы с импульсной, амплитудно-импульсной и импульсно-кодовой (цифровой) модуляциями. Методы модуляции, используемые для передачи дискретных данных по каналам связи вычислительных сетей.

Обобщенное представление модулированных колебаний в виде узкополосных сигналов. Огибающая, частота и фаза узкополосного сигнала. Аналитический сигнал и его свойства.

Раздел 2. ПРЕОБРАЗОВАНИЯ СИГНАЛОВ В ЛИНЕЙНЫХ РАДИОТЕХНИЧЕСКИХ ЦЕПЯХ

Тема 2.1. ЛИНЕЙНЫЕ РАДИОТЕХНИЧЕСКИЕ ЦЕПИ С ПОСТОЯННЫМИ ПАРАМЕТРАМИ

Классификация линейных цепей. Основные свойства и характеристики линейных цепей, методы их расчета и способы экспериментального определения. Устройства дифференцирования и интегрирования сигналов, их характеристики. Фильтры. Активные линейные цепи. Усилительные устройства, классификация и принцип работы.

Линейные радиотехнические цепи с обратной связью. Влияние обратной связи на характеристики устройств. Устойчивость линейных цепей с обратной связью. Критерии устойчивости Гурвица, Найквиста, Михайлова.

Тема 2.2. ПРОХОЖДЕНИЕ ДЕТЕРМИНИРОВАННЫХ СИГНАЛОВ ЧЕРЕЗ ЛИНЕЙНЫЕ ЦЕПИ

Постановка задачи и методы анализа линейных цепей. Временной и спектральный методы анализа, их сравнительная характеристика. Прохождение сигналов через дифференцирующую и интегрирующую цепи.

Особенности анализа прохождения широкополосных и узкополосных сигналов через узкополосные цепи. Упрощенный спектральный метод. Упрощенный временной метод (метод огибающей). Анализ прохождения сигналов с амплитудной и частотной модуляциями через резонансный усилитель.

Раздел 3. ПРЕОБРАЗОВАНИЯ СИГНАЛОВ В НЕЛИНЕЙНЫХ И ПАРАМЕТРИЧЕСКИХ РАДИОТЕХНИЧЕСКИХ ЦЕПЯХ

Тема 3.1. НЕЛИНЕЙНЫЕ РАДИОТЕХНИЧЕСКИЕ ЦЕПИ И МЕТОДЫ ИХ АНАЛИЗА

Нелинейные радиотехнические цепи, их свойства и основные характеристики. Методы аппроксимации характеристик нелинейных элементов. Преобразование спектра сигнала в цепи с нелинейным элементом при степенной и кусочно-линейной аппроксимации характеристик. Метод угла отсечки.

Метод фазовой плоскости. Фазовые траектории, особые точки, изоклины, предельные циклы. Анализ нелинейных устройств методом фазовой плоскости.

Тема 3.2. НЕЛИНЕЙНЫЕ ПРЕОБРАЗОВАНИЯ СИГНАЛОВ

Нелинейное резонансное усиление сигналов, режимы работы и параметры усилителей. Умножение частоты. Синтез идеального умножителя частоты. Резонансные и параметрические умножители частоты.

Получение амплитудно-модулированных колебаний. Амплитудные модуляторы на основе резонансных усилителей и аналоговых перемножителях напряжений. Балансный модулятор. Выпрямление колебаний. Принципы построения и функционирования выпрямителей. Детектирование сигналов с амплитудной модуляцией. Линейный и квадратичный детекторы. Синхронное детектирование.

Получение сигналов с угловой модуляцией. Частотные и фазовые модуляторы. Принцип работы цифрового частотного модулятора. Детектирование сигналов с угловой модуляцией. Частотное и фазовое детектирование.

Преобразование частоты. Балансные преобразователи частоты .

Принципы построения модуляторов и демодуляторов (модемов), используемых в каналах связи вычислительных сетей.

Тема 3.3. АВТОКОЛЕБАТЕЛЬНЫЕ СИСТЕМЫ

Структурная схема автогенератора. Необходимость положительной обратной связи. Возникновение колебаний и стационарный режим работы автогенератора. Баланс амплитуд и баланс фаз. "Мягкий" и "жесткий" режимы самовозбуждения. Квазилинейный метод анализа стационарного режима. Определение амплитуды и частоты генерируемых колебаний в стационарном режиме.

Схемы автогенераторов. LC и RC автогенераторы. Трехточечные автогенераторы с индуктивной и емкостной связями. Автогенераторы на приборах с отрицательным дифференциальным сопротивлением. Стабилизация частоты в автогенераторах.

Релаксационные автогенераторы. Мультивибраторы, одновибраторы.

Тема 3.4. ПАРАМЕТРИЧЕСКИЕ УСТРОЙСТВА

Особенности и разновидности параметрических цепей. Энергетические соотношения в цепи с нелинейной емкостью. Уравнения Мэнли-Роу.

Дифференциальное уравнение цепи с переменной емкостью. Уравнение Матье. Усиление сигналов в параметрических цепях. Одноконтурный и двухконтурный параметрические усилители. Параметрическое возбуждение колебаний. Емкостной и индуктивный параметроны.

Раздел 4. ПРЕОБРАЗОВАНИЯ СЛУЧАЙНЫХ СИГНАЛОВ

Тема 4.1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ СИГНАЛОВ

Случайные сигналы и помехи в системах связи и управления. Вероятностно-статистический подход к описанию физических явлений в радиотехнике. Случайный процесс как модель случайного сигнала. Одномерные и многомерные законы распределения вероятностей случайных процессов. Числовые характеристики. Корреляционная функция как мера статистических связей. Понятие статистической зависимости случайных процессов.

Стационарные и нестационарные случайные процессы. Эргодические случайные процессы. Статистические характеристики стационарных и эргодических случайных процессов.

Спектральная плотность мощности случайного сигнала. Теорема Винера-Хинчина. Соотношение между шириной спектра и интервалом корреляции. Некоторые модели случайных сигналов: нормальный (гауссовский) шум, белый шум, узкополосный случайный процесс, их вероятностные характеристики.

Тема 4.2. ЛИНЕЙНЫЕ ПРЕОБРАЗОВАНИЯ СЛУЧАЙНЫХ СИГНАЛОВ

Постановка задачи анализа линейных цепей при воздействии случайных сигналов. Спектральная плотность мощности и корреляционная функция случайного сигнала на выходе линейной цепи. Числовые характеристики. Определение законов распределения случайных сигналов на выходе линейной цепи. Эффект нормализации случайных сигналов в узкополосных цепях.

Характеристики собственных шумов линейных цепей. Дифференцирование и интегрирование случайных процессов.

Тема 4.3. НЕЛИНЕЙНЫЕ ПРЕОБРАЗОВАНИЯ СЛУЧАЙНЫХ СИГНАЛОВ

Постановка задачи анализа нелинейных цепей при воздействии случайных сигналов. Методы определения законов распределения вероятностей случайных сигналов на выходе нелинейной безынерционной цепи. Спектральная плотность мощности и корреляционная функция выходного сигнала. Определение числовых характеристик.

Преобразование сигнала и шума в приемном тракте. Характеристики огибающей и фазы узкополосного случайного процесса. Воздействие узкополосного нормального шума на линейный и квадратичный амплитудные детекторы. Совместное воздействие гармонического колебания и нормального шума на амплитудный детектор. Помехоустойчивость амплитудных детекторов. Воздействие сигнала и нормального шума на частотный детектор.

Тема 4.4. ПРИНЦИПЫ ОПТИМАЛЬНОЙ ЛИНЕЙНОЙ ФИЛЬТРАЦИИ

Постановка задачи оптимальной линейной фильтрации сигналов на фоне помех. Коэффициент передачи согласованного фильтра и отношение сигнала к шуму на его выходе. Импульсная характеристика согласованного фильтра. Физическая осуществимость. Сигнал и помеха на выходе согласованного фильтра. Синтез согласованных фильтров для некоторых типовых сигналов. Формирование сигнала, сопряженного с заданным фильтром. Согласованная фильтрация заданного сигнала при "небелом" шуме.

Сущность корреляционного приема. Структурная схема корреляционного приемника. Квазиоптимальные фильтры.

Раздел 5. ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ

Тема 5.1. ПРИНЦИПЫ ДИСКРЕТНОЙ ФИЛЬТРАЦИИ

Проблемы цифровой обработки сигналов. Общая структура цифрового фильтра. Спектр дискретизированного сигнала. Дискретное преобразование Фурье. Быстрое преобразование Фурье. Общие сведения о дискретном z - преобразовании. Дискретная свертка сигналов.

Тема 5.2. ЦИФРОВЫЕ ФИЛЬТРЫ

Принцип действия цифрового фильтра. Передаточная функция цифрового фильтра. Нерекурсивные и рекурсивные цифровые фильтры. Канонические схемы рекурсивных фильтров. Методы синтез цифровых фильтров.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

1. Спектральный анализ периодических сигналов.

2. Спектральный анализ непериодических сигналов.

3. Корреляционный анализ сигналов.

4. Дискретизация и восстановление сигналов по теореме отсчетов (теореме Котельникова).

5. Прохождение сигналов через линейные устройства.

6. Нелинейные преобразования сигналов.

7. Расчет параметров амплитудно-модулированных колебаний.

8. Расчет параметров сигналов с частотной и фазовой модуляциями.

9. Расчет амплитуды и частоты колебаний, формируемых автогенераторами.

10. Расчет характеристик параметрических усилителей.

11. Расчет числовых характеристик стационарных и эргодических случайных сигналов.

12. Линейные преобразования случайных сигналов.

13. Нелинейные преобразования случайных сигналов.

14. Синтез согласованных фильтров для различных сигналов.

15. Синтез цифровых фильтров.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ ЛАБОРАТОРНЫХ РАБОТ

1. Исследование спектров периодических и непериодических сигналов.

2. Исследование спектров сигналов с амплитудной, частотной и фазовой модуляциями.

3. Корреляционный анализ детерминированных сигналов.

4. Исследование процессов дискретизации сигналов по теореме отсчетов.

5. Исследование прохождения сигналов через линейные устройства.

6. Исследование прохождения сигналов через нелинейные устройства.

7. Исследование процессов амплитудной модуляции.

8. Исследование процессов выпрямления и детектирования АМ колебаний.

9. Исследование генераторов гармонических колебаний.

10. Исследование законов распределения случайных сигналов.

11. Исследование прохождения случайных сигналов через линейные устройства.

12. Исследование прохождения случайных сигналов через нелинейные устройства.

13. Корреляционный анализ случайных сигналов.

14. Синтез и исследование цифровых фильтров.

ПРИМЕРНЫЙ ПЕРЕЧЕНЬ ТЕМ КУРСОВЫХ РАБОТ

1. Расчет прохождения сигналов сложной формы через линейные цепи спектральным методом.

2. Расчет прохождения сигналов сложной формы через линейные цепи временным методом.

3. Расчет временных и спектральных характеристик сигналов на выходе нелинейных устройств.

4. Расчет статистических характеристик случайных сигналов на выходе линейного устройства.

5. Расчет статистических характеристик случайных сигналов на выходе нелинейного устройства.

ЛИТЕРАТУРА

ОСНОВНАЯ

1. Нефедов радиоэлектроники и связи: Учебник для вузов. - М.: Высшая школа, 2002.

2. Гоноровский цепи и сигналы: Учебник для вузов. - М.: Радио и связь, 1986.

3. , Ушаков основы радиотехники: Учебное пособие для вузов. - М.: Высшая школа, 2002.

4. Баскаков цепи и сигналы: Учебник для вузов. - М.: Высшая школа, 2000.

5. Радиотехнические цепи и сигналы. , и др./Под ред. - Радио и связь, 1990.

ДОПОЛНИТЕЛЬНАЯ

1. Манаев радиоэлектроники. - М.: Радио и связь, 1990.

2. Хемминг фильтры: Пер. с англ. М:. Сов. радио. 1980.

3. Каяцкас радиоэлектроники. - М:. Высшая школа, 1988.

4. , Нефедов. - М.:МИРЭА, 1997.

5. Левин основы статистической радиотехники. - М.: Радио и связь, 1989.

6. Прокинс Дж. Цифровая связь. - М.: Радио и связь, 1999.

7. Битус цепи и сигналы. Часть 1 и 3. - Мн.: БГУИР, 1999 .

8. Радиотехнические цепи и сигналы. Примеры и задачи: Учебное пособие для вузов. / Под ред. - М: Радио и связь, 1989 .

9. Баскаков цепи и сигналы: Руководство к решению задач: Учебное пособие для вузов. - М: Высшая школа, 2002.

При проведении лекций в аудиториях, оборудованных системой учебного ТВ, обеспечивается их компьютерное сопровождение. Лабораторные и практические занятия проводятся в компьютерных классах с использованием персональных ЭВМ. Для этого имеются соответствующее программное обеспечение , созданное сотрудниками БГУИР, и пакеты прикладных программ типа Mathcad, Matlab и др.

УТВЕРЖДЕНА

Министерством образования

Республики Беларусь

16.01.2006

Регистрационный № ТД-I.009/тип.

ЭЛЕКТРОННЫЕ , СВЕРХВЫСОКОЧАСТОТНЫЕ

И КВАНТОВЫЕ ПРИБОРЫ

Учебная программа для высших учебных заведений

по специальностям 1 –Радиотехника, 1 –Радиоэлектронные системы, 1 –Радиоинформатика, 1 –Радиоэлектронная защита информации

СОСТАВИТЕЛИ:

, заведующий кафедрой электроники Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук;

,

, старший преподаватель кафедры электроники Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники»;

, доцент кафедры электроники Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук;

, доцент кафедры электроники Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники», кандидат технических наук;

Под общей редакцией:

РЕЦЕНЗЕНТЫ:

Кафедра электроники Военной Академии Республики Беларусь (протокол от 01.01.2001.);

, начальник отдела научно-исследовательский приборостроительный институт», кандидат технических наук

Кафедрой электроники Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» (протокол от 01.01.2001.);

Научно-методическим советом Учреждения образования «Белорусский государственный университет информатики и радиоэлектроники» (протокол от 01.01.2001.)

СОГЛАСОВАНА :

Председателем Учебно-методическим объединением вузов Республики Беларусь по образованию в области информатики и радиоэлектроники;

Начальником Управлением высшего и среднего специального образования Министерства образования Республики Беларусь;

Первым проректором Государственным учреждением образования «Республиканский институт высшей школы»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Типовая программа «Электронные, сверхвысокочастотные и квантовые приборы» разработана для специальностей 1 –Радиотехника, 1 –Радиоэлектронные системы, 1 –Радиоинформатика, 1 –Радиоэлектронная защита информации высших учебных заведений и обеспечивает базовую подготовку студентов, необходимую для успешного изучения специальных дисциплин и последующего решения производственных и исследовательских задач в соответствии с образовательными стандартами. Целью изучения дисциплины является подготовка студентов к решению задач, связанных с рациональным выбором электронных приборов, их режимов работы и схем включения в различных устройствах.

Изучение дисциплины «Электронные, сверхвысокочастотные и квантовые приборы» должно опираться на содержание следующих дисциплин: «Высшая математика» (дифференциальное и интегральное исчисление, дифференциальные уравнения, функции комплексной переменной); «Физика» (электричество, магнетизм, электромагнитные волны, квантовая физика, физика твердого тела), «Электротехника» (теория линейных и нелинейных электрических цепей).

Программа составлена в соответствии с требованиями образовательных стандартов и рассчитана на объем 86 учебных часов. Примерное распределение учебных часов по видам занятий: лекций – 52 часа, лабораторных занятий – 34 часа.

В результате изучения курса «Электронные, сверхвысокочастотные и квантовые приборы» студент должен:

знать:

физические основы явлений, принципы действия, устройство, параметры, характеристики электронных, сверхвысокочастотных и квантовых приборов и элементов микроэлектроники и их различных моделей, используемых при анализе и синтезе радиоэлектронных устройств;

– современное состояние и перспективы развития электронных, сверхвысокочастотных и квантовых приборов;

уметь:

– использовать полученные знания для правильного выбора электронного прибора и задания его рабочего режима по постоянному току;

– находить параметры приборов по их характеристикам;

– определять влияние режимов и условий эксплуатации на параметры приборов;

приобрести навыки работы:

– с электронными приборами и аппаратурой, используемой для исследования характеристик и измерения параметров приборов;

Раздел 1. ЭЛЕКТРОННЫЕ ПРИБОРЫ

ВВЕДЕНИЕ

Определение термина «Электронные приборы». Классификация электронных приборов по характеру рабочей среды (вакуум , разреженный газ, твердое тело), принципу действия и диапазону рабочих частот. Основные свойства и особенности электронных приборов.

Краткий исторический очерк развития отечественной и зарубежной электронной техники. Роль электронных приборов в радиоэлектронике, телекоммуникационных системах, вычислительных комплексах и других областях науки и техники. Значение курса как одной из базовых дисциплин по радиотехническим специальностям.

Тема 1. ФИЗИЧЕСКИЕ ОСНОВЫ ПОЛУПРОВОДНИКОВОЙ ЭЛЕКТРОНИКИ

Свойства полупроводников. Основные материалы полупроводниковой электроники (кремний, германий, арсенид галлия, нитрид галлия), их основные электрофизические параметры. Процессы образования свободных носителей заряда.

Концентрация свободных носителей в собственном и примесном полупроводниках, ее зависимость от температуры. Время жизни и диффузионная длина носителей. Уровень Ферми, его зависимость от температуры и концентрации примесей.

Кинетические процессы в полупроводниках. Тепловое движение и его средняя скорость. Дрейфовое движение, подвижность носителей заряда и ее зависимость от температуры и концентрации примесей. Плотность дрейфового тока, удельная проводимость полупроводников и ее зависимость от температуры и концентрации примесей. Движение носителей в сильных электрических полях, зависимость дрейфовой скорости от напряженности электрического поля. Диффузионное движение носителей, коэффициент диффузии, плотность диффузионного тока. Соотношение Эйнштейна. Появление электрического поля в полупроводнике при неравномерном распределении примесей.

Физические процессы у поверхности полупроводника. Поверхностные энергетические состояния, особенности движения носителей вблизи поверхности, поверхностная рекомбинация. Полупроводник во внешнем электрическом поле, длина экранирования. Обедненный, обогащенный и инверсионный слои.

Контактные явления в полупроводниках. Физические процессы в электронно-дырочном переходе. Образование обедненного слоя, условие равновесия. Уравнение Пуассона. Энергетическая диаграмма, распределение потенциала, напряженности электрического поля и объемного заряда в переходе. Высота потенциального барьера и ширина перехода.

Электронно-дырочный переход при подаче внешнего напряжения. Инжекция и экстракция носителей заряда. Особенности несимметричного перехода.

Вольт-амперная характеристика (ВАХ) идеализированного электронно-дырочного перехода. Распределение неравновесных носителей. Тепловой ток, его зависимость от ширины запрещенной зоны, концентрации примесей и температуры. Математическая модель и параметры идеализированного p-n-перехода: статическое и дифференциальное сопротивление, барьерная и диффузионная емкости перехода, их зависимость от приложенного напряжения. Пробой p-n-перехода. Виды пробоя.

Контакт металл-полупроводник. Выпрямляющий и невыпрямляющий (омический) контакты.

Гетеропереходы. Энергетические диаграммы. Особенности физических процессов. Особенности ВАХ.

Тема 2. ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

Классификация полупроводниковых диодов по технологии изготовления, мощности, частоте и функциональному применению: выпрямительные, стабилитроны, варикапы, импульсные диоды, диоды с накоплением заряда, диоды Шотки, туннельные и обращенные диоды. Принцип работы, характеристики, параметры, схемы включения. Система обозначения полупроводниковых диодов. Влияние температуры на ВАХ.

Тема 3. БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

Устройство биполярного транзистора (БТ). Схемы включения. Основные режимы: активный, отсечки, насыщения, инверсный. Принцип действия транзистора: физические процессы в эмиттерном переходе, базе и коллекторном переходе; распределение неосновных носителей в базе при различных режимах. Эффект модуляции ширины базы. Токи в транзисторе; коэффициенты передачи тока в схемах с общей базой (ОБ) и общим эмиттером (ОЭ).

Физические параметры транзистора: коэффициент передачи тока, дифференциальные сопротивления и емкости переходов, объемные сопротивления областей.

Статические характеристики транзистора. Модель идеализированного транзистора (модель Эберса-Молла). Характеристики реального транзистора в схемах с ОБ и ОЭ. Влияние температуры на характеристики транзистора.

Транзистор как линейный четырехполюсник. Понятие малого сигнала. Системы Z-, Y-, H - параметров и схемы замещения транзистора. Связь H-параметров с физическими параметрами транзистора. Определение H-параметров по статическим характеристикам. Зависимость H-параметров от режима работы и температуры. Т - и П-образные эквивалентные схемы транзисторов.

Работа транзистора с нагрузкой. Построение нагрузочной прямой. Принцип усиления.

Особенности работы транзистора на высоких частотах. Физические процессы, определяющие частотные параметры транзистора. Предельная и граничная частоты, эквивалентная схема транзистора на высоких частотах. Способы повышения рабочей частоты БТ.

Работа транзистора в импульсном режиме. Физические процессы накопления и рассасывания носителей заряда. Импульсные параметры транзистора.

Разновидности и перспективы развития БТ.

Тема 4. ПОЛЕВЫЕ ТРАНЗИСТОРЫ

Полевой транзистор (ПТ) с управляющим p-n-переходом. Устройство, схемы включения. Принцип действия, физические процессы, влияние напряжений электродов на ширину p-n-перехода и форму канала. Статические характеристики, области отсечки, насыщения и пробоя p-n-перехода.

ПТ с барьером Шотки. Устройство, принцип действия. Характеристики и параметры.

ПТ с изолированным затвором. МДП-транзисторы со встроенным и индуцированным каналами. Устройство, схемы включения. Режимы обеднения и обогащения в транзисторе со встроенным каналом и его статические характеристики.

ПТ как линейный четырехполюсник. Система у-параметров полевых транзисторов и их связь с физическими параметрами. Влияние температуры на характеристики и параметры ПТ.

Работа ПТ на высоких частотах и в импульсном режиме. Факторы, определяющие частотные свойства. Предельная частота. Эквивалентная схема на высоких частотах. Области применения ПТ. Сравнение полевых и биполярных транзисторов. Перспективы развития и применения ПТ.

Тема 5. ПЕРЕКЛЮЧАЮЩИЕ ПРИБОРЫ

Устройство, принцип действия, ВАХ, разновидности тиристоров , диодные тиристоры, триодные тиристоры, симисторы, области применения. Параметры и система обозначения переключающих приборов.

· Тема 6. ЭЛЕМЕНТЫ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ

Общие сведения о микроэлектронике. Классификация компонентов электронной аппаратуры и элементов гибридных микросхем. Пассивные дискретные компоненты электронных устройств (резисторы, конденсаторы, индуктивности). Назначение, физические основы работы, параметры, системы обозначения. Пассивные элементы интегральных микросхем: резисторы, конденсаторы. Биполярные транзисторы в интегральном исполнении, транзисторы с барьером Шотки, многоэмиттерные транзисторы. Диоды полупроводниковых ИМС. Биполярные транзисторы с инжекционным питанием. Полупроводниковые приборы с зарядовой связью (ПЗС). Применение ПЗС. Параметры элементов ПЗС.

· Тема 7. КОМПОНЕНТЫ ОПТОЭЛЕКТРОНИКИ

Определение оптического диапазона электромагнитных колебаний. Классификация оптоэлектронных полупроводниковых приборов. Электролюминесценция. Основные типы полупроводниковых излучателей: некогерентные и когерентные полупроводниковые излучатели. Светодиоды, устройство, принцип действия, характеристики, параметры. Основные материалы, применяемые для изготовления светодиодов. Достижения в разработке светодиодов.

Полупроводниковые приемники излучения: фоторезисторы, фотодиоды, фототранзисторы, фототиристоры. Принцип работы, характеристики, параметры.

Устройство оптронов, основные типы оптронов: резисторные, диодные, транзисторные и тиристорные. Классификация, принцип действия, входные и выходные параметры оптронов.

Тема 10. ЭЛЕКТРОННО-УПРАВЛЯЕМЫЕ ЛАМПЫ

Электронная эмиссия. Виды эмиссии. Катоды электровакуумных приборов, основные типы катодов. Прохождение тока в вакууме, ток переноса, ток смещения, полный ток. Понятие о наведенном токе.

Вакуумный диод. Принцип действия. Понятие об объемном заряде. Режим насыщения и режим ограничения тока объемным зарядом. Идеализированная и реальная анодные характеристики диода. Статические параметры. Основные типы диодов, области применения.

Трехэлектродная лампа. Устройство, роль сетки в триоде. Понятие о действующем напряжении и проницаемости сетки. Токораспределение в триоде. Статические характеристики триода. Статические параметры и определение их по характеристикам. Междуэлектродные емкости. Режим работы триода с нагрузкой, нагрузочные характеристики, параметры режима работы с нагрузкой.

Тетроды и пентоды. Роль сеток. Действующее напряжение. Токораспределение. Статические характеристики и параметры многоэлектродных ламп; междуэлектродные емкости. Эквивалентные схемы электронных ламп на низких и высоких частотах.

Мощные генераторные и модуляторные лампы.

Особенности работы электронных ламп со статическим управлением электронным потоком в диапазоне сверхвысоких частот (СВЧ). Понятие о полном токе. Влияние инерционных свойств электронного потока на работу электронных ламп. Влияние на параметры ламп диапазона СВЧ междуэлектродных емкостей и индуктивностей выводов. Особенности конструкции электронных ламп диапазона СВЧ. Мощные электронные лампы СВЧ диапазона. Области применения электронных ламп диапазона СВЧ.

Тема 11. ПРИБОРЫ ОТОБРАЖЕНИЯ ИНФОРМАЦИИ

Классификация приборов для отображения информации.

Типы электронно-лучевых приборов. Устройство и принцип действия электронно-лучевых приборов. Элементы электронной оптики. Системы фокусировки и отклонения в электронно-лучевых трубках. Типы экранов электронно-лучевых трубок. Параметры экранов.

Типы электронно-лучевых трубок: осциллографические, трубки индикаторных устройств, кинескопы, трубки дисплеев, запоминающие трубки.

Полупроводниковые индикаторы.

Жидкокристаллические индикаторы. Основные параметры, характеризующие жидкие кристаллы. Устройство ЖКИ в проходящем и отраженном свете. Возможность отображения цвета в ЖКИ. ЖК мониторы, устройство и их основные параметры.

Вакуумные накаливаемые индикаторы (ВНИ), вакуумные люминесцентные индикаторы (ВЛИ): одноразрядные, многоразрядные, сегментные ВЛИ, электролюминесцентные индикаторы (ЭЛИ): устройство и принцип действия.

Газоразрядные индикаторы (ГРИ). Основные положения теории тлеющего разряда с холодным катодом. Дискретные газоразрядные индикаторы. Типы и основные параметры ГРИ. Устройство и принцип действия газоразрядных индикаторных панелей.

Радиотехнические цепи и элементы, используемые для осуществления перечисленных в § 1.2 преобразований сигналов и колебаний, можно разбить на следующие основные классы:

линейные цепи с постоянными параметрами;

линейные цепи с переменными параметрами;

нелинейные цепи.

Следует сразу же указать, что в реальных радиоустройствах четкое выделение линейных и нелинейных цепей и элементов не всегда возможно. Отнесение одних и тех же элементов к линейным или нелинейным часто зависит от уровня воздействующих на них сигналов.

Тем не менее приведенная выше классификация цепей необходима для понимания теории и техники обработки сигналов.

Сформулируем основные свойства этих цепей.

2. ЛИНЕЙНЫЕ ЦЕПИ С ПОСТОЯННЫМИ ПАРАМЕТРАМИ

Можно исходить из следующих определений.

1. Цепь является линейной, если входящие в нее элементы не зависят от внешней силы (напряжения, тока), действующей на цепь.

2. Линейная цепь подчиняется принципу суперпозиции (наложения).

В математической форме этот принцип выражается следующим равенством:

где L - оператор, характеризующий воздействие цепи на входной сигнал.

Суть принципа суперпозиции может быть сформулирована следующим образом: при действии на линейную цепь нескольких внешних сил поведение цепи (ток, напряжение) можно определить путем наложения (суперпозиции) решений, найденных для каждой из силе отдельности. Можно использовать еще и такую формулировку: в линейной цепи сумма эффектов от отдельных воздействий совпадает с эффектом от суммы воздействий. При этом предполагается, что цепь свободна от начальных запасов энергии.

Принцип наложения лежит в основе спектрального и операторного методов анализа переходных процессов в линейных цепях, а также метода интеграла наложения (интеграл Дюамеля). Применяя принцип наложения, любые сложные сигналы при передаче их через линейные цепи можно разложить на простые, более удобные для анализа (например, гармонические).

3. При любом сколь угодно сложном воздействии в линейной цепи с постоянными параметрами не возникает колебаний новых частот. Это вытекает из того факта, что при гармоническом воздействии на линейную цепь с постоянными параметрами колебание на выходе также остается гармоническим с той же частотой, что и на входе; изменяются лишь амплитуда и фаза колебания. Разложив сигналы на гармонические колебания и подставив результаты разложения в (1.1), убедимся, что на выходе цепи могут существовать только колебания с частотами, входящими в состав входного сигнала.

Это означает, что ни одно из преобразований сигналов, сопровождающихся появлением новых частот (т. е. частот, отсутствующих в спектре входного сигнала), не может в принципе быть осуществлено с помощью линейной цепи с постоянными параметрами. Такие цепи находят широчайшее применение для решения задач, несвязанных с трансформацией спектра, таких как линейное усиление сигналов, фильтрация (по частотному признаку) и т. д.

3. ЛИНЕЙНЫЕ ЦЕПИ С ПЕРЕМЕННЫМИ ПАРАМЕТРАМИ

Имеются в виду цепи, один или несколько параметров которых изменяются во времени (но не зависят от входного сигнала). Подобные цепи часто называются линейными параметрическими.

Сформулированные в предыдущем пункте свойства 1 и 2 справедливы и для линейных параметрических цепей. Однако в отличие от предыдущего случая даже простейшее гармоническое воздействие создает в линейной цепи с переменными параметрами сложное колебание, имеющее спектр частот. Это можно пояснить на следующем простейшем примере. Пусть к резистору, сопротивление которого изменяется во времени по закону

приложена гармоническая ЭДС

Ток через сопротивление

Как видим, в составе тока имеются компоненты с частотами , которых нет в . Даже из этой простейшей модели ясно, что, изменяя во времени сопротивление, можно осуществить преобразование спектра входного сигнала.

Аналогичный результат, хотя и с более сложными математическими выкладками, можно получить для цепи с переменными параметрами, содержащей реактивные элементы - катушки индуктивности и конденсаторы. Этот вопрос рассматривается в гл. 10. Здесь лишь отметим, что линейная цепь с переменными параметрами преобразует частотный спектр воздействия и, следовательно, может быть использована для некоторых преобразований сигналов, сопровождающихся трансформацией спектра. Из дальнейшего будет также видно, что периодическое изменение во времени индуктивности или емкости колебательной цепи позволяет при некоторых условиях осуществить «накачку» энергии от вспомогательного устройства, изменяющего этот параметр («параметрические усилители» и «параметрические генераторы», гл. 10).

4. НЕЛИНЕЙНЫЕ ЦЕПИ

Радиотехническая цепь является нелинейной, если в ее состав входят один или несколько элементов, параметры которых зависят от уровня входного сигнала. Простейший нелинейный элемент - диод с вольт-амперной характеристикой, представленной на рис. 1.4.

Перечислим основные свойства нелинейных цепей.

1. К нелинейным цепям (и элементам) принцип суперпозиции неприменим. Это свойство нелинейных цепей тесно связано с кривизной вольт-амперных (или иных аналогичных) характеристик нелинейных элементов, нарушающей пропорциональность между током и напряжением. Например, для диода, если напряжению соответствует ток а напряжению - ток то суммарному напряжению будет соответствовать ток отличный от суммы (рис. 1.4).

Из этого простого примера видно, что при анализе воздействия сложного сигнала на нелинейную цепь его нельзя разлагать на более простые; необходимо искать отклик цепи на результирующий сигнал. Неприменимость для нелинейных цепей принципа суперпозиции делает непригодными спектральный и иные методы анализа, основанные на разложении сложного сигнала на составляющие.

2. Важным свойством нелинейной цепи является преобразование спектра сигнала. При воздействии на нелинейную цепь простейшего гармонического сигнала в цепи помимо колебаний основной частоты возникают гармоники с частотами, кратными основной частоте (а в некоторых случаях и постоянная составляющая тока или напряжения). В дальнейшем будет показано, что при сложной форме сигнала в нелинейной цепи помимо гармоник возникают еще и колебания с комбинационными частотами, являющиеся результатом взаимодействия отдельных колебаний, входящих в состав сигнала.

С точки зрения преобразования спектра сигнала следует подчеркнуть принципиальное различие между линейными параметрическими и нелинейными цепями. В нелинейной цепи структура спектра на выходе зависит не только от формы входного сигнала, но и от его амплитуды. В линейной параметрической цепи структура спектра от амплитуды сигнала не зависит.

Особенный интерес для радиотехники представляют свободные колебания в нелинейных цепях. Подобные колебания называются автоколебаними, поскольку они возникают и могут устойчиво существовать в отсутствие внешнего периодического воздействия. Расход энергии компенсируется источником энергии постоянного тока.

Основные радиотехнические процессы: генерация, модуляция, детектирование и преобразование частоты - сопровождаются трансформацией частотного спектра. Поэтому эти процессы можно осуществить с помощью либо нелинейных, либо линейных параметрических цепей. В некоторых случаях используются одновременно как нелинейные, так и линейные параметрические цепи. Следует, кроме того, подчеркнуть, что нелинейные элементы работают в сочетании с линейными цепями, осуществляющими выделение полезных компонентов преобразованного спектра. В связи с этим, как уже отмечалось в начале данного параграфа, деление цепей на линейные, нелинейные и линейные параметрические весьма условно. Обычно для описания поведения различных узлов одного и того же радиотехнического устройства приходится применять разнообразные математические методы - линейные и нелинейные.

Рис. 1.4. Вольт-амперная характеристика нелинейного элемента (диода)

Изложенные выше основные свойства цепей трех классов - линейных с постоянными параметрами, линейных параметрических и нелинейных - сохраняются при любых формах реализации цепей: с сосредоточенными параметрами, с распределенными параметрами (линии, излучающие устройства) и т. д. Эти свойства распространяются также и на устройства цифровой обработки сигналов.

Следует, однако, подчеркнуть, что положенный в основу деления цепей на линейные и нелинейные принцип суперпозиции сформулирован выше для операции суммирования сигналов на входе цепи [см. (1.1). Однако этой операцией не исчерпываются требования к современным системам обработки сигналов. Важным для практики является, например, случай, когда сигнал на входе цепи является произведением двух сигналов. Оказывается, что и для подобных сигналов можно осуществить обработку, подчиняющуюся принципу суперпозиции, однако эта обработка будет являться сочетанием специально подобранных нелинейных и линейных операций. Подобная обработка называется гомоморфной.

Синтез подобных устройств рассматривается в конце курса (см. гл. 16), после изучения линейных и нелинейных цепей, а также цифровой обработки сигналов, развитие которой и явилось толчком к широкому применению гомоморфной обработки.


Основные радиотехнические процессы


  1. Преобразование исходного сообщения в электрический сигнал.

  2. Генерация высокочастотных колебаний.

  3. Управление колебаниями (модуляция).

  4. Усиление слабых сигналов в приемнике.

  5. Выделение сообщения из высокочастотного колебания (детектирование и декодирование).

Радиотехнические цепи и методы

их анализа

Классификация цепей

И элементы, используемые для осуществления перечисленных преобразований сигналов и колебаний, можно разбить на следующие основные классы:

Линейные цепи с постоянными параметрами;

Линейные цепи с переменными параметрами;

Нелинейные цепи.
^ Линейные цепи с постоянными параметрами

Можно исходить из следующих определений:


  1. Цепь является линейной, если входящие в нее элементы не зависят от внешней силы (напряжения, тока), действующей на цепь.

  2. Линейная цепь подчиняется принципу суперпозиции (наложения).
,

Где L - оператор, характеризующий воздействие цепи на входной сигнал.

При действии на линейную цепь нескольких внешних сил поведение цепи (ток, напряжение) можно определить путем наложения (суперпозиции) решений, найденных для каждой из сил в отдельности.

Иначе: в линейной цепи сумма эффектов от отдельных воздействий совпадает с эффектом от суммы воздействий.


  1. При любом сколь угодно сложном воздействии в линейной цепи с постоянными параметрами не возникает колебаний новых частот.

^ Линейные цепи с переменными параметрами

Имеются в виду цепи, один или несколько параметров которых изменяются во времени (но не зависят от входного сигнала). Подобные цепи часто называются линейными параметрическими .

Свойства 1 и 2 из предыдущего пункта справедливы и для этих цепей. Однако даже простейшее гармоническое воздействие создает в линейной цепи с переменными параметрами сложное колебание, имеющее спектр частот.
^ Нелинейные цепи

Радиотехническая цепь является нелинейной, если в ее состав входят один или несколько элементов, параметры которых зависят от уровня входного сигнала. Простейший нелинейный элемент - диод.

Основные свойства нелинейных цепей:


  1. К нелинейным цепям (и элементам) принцип суперпозиции неприменим .

  2. Важным свойством нелинейной цепи является преобразование спектра сигнала.

^ Классификация сигналов

С информационной точки зрения сигналы можно разделить на детерминированные и случайные.

Детерминированным называют любой сигнал, мгновенное значение которого в любой момент времени можно предсказать с вероятностью единица.

К случайным относят сигналы, мгновенные значения которых заранее неизвестны и могут быть предсказаны лишь с некоторой вероятностью, меньшей единицы.

Наряду с полезными случайными сигналами в теории и практике приходится иметь дело со случайными помехами - шумами. Полезные случайные сигналы, а также помехи часто объединяют термином случайные колебания или случайные процессы .

Сигналы в канале радиосвязи часто подразделяют на управляющие сигналы и на радиосигналы ; под первыми понимают модулирующие, а под вторыми - модулированные колебания.

Применяемые в современной радиоэлектронике сигналы можно разделить на следующие классы:

Произвольные по величине и непрерывные по времени (аналоговые);

Произвольные по величине и дискретные по времени (дискретные);

Квантованные по величине и непрерывные по времени (квантованные);

Квантованные по величине и дискретные по времени (цифровые).
^ Характеристики детерминированных

сигналов

Энергетические характеристики

Основными энергетическими характеристиками вещественного сигнала s(t) являются его мощность и энергия.

Мгновенная мощность определяется как квадрат мгновенного значения s(t):

Энергия сигнала на интервале t 2 , t 1 определяется как интеграл от мгновенной мощности:

.

Отношение

Имеет смысл средней на интервале t 2 , t 1 мощности сигнала.
^ Представление произвольного сигнала

в виде суммы элементарных колебаний

Для теории сигналов и их обработки важное значение имеет разложение заданной функции f(x) по различным ортогональным системам функций j n (x). Любой сигнал может быть представлен в виде обобщенного ряда Фурье:

,

Где С i - весовые коэффициенты,

J i - ортогональные функции разложения (базисные функции).

Для базисный функций должно выполняться условие:

Если сигнал определен на интервале от t 1 до t 2 , то

Норма базисной функции.

Если функция не ортонормированная, то ее можно таким образом привести. С увеличением n уменьшается C n .

Предположим, что задано множество базисных функций {j n }. При задании множества базисных функций и при фиксированном количестве слагаемых в обобщенном ряде Фурье, ряд Фурье дает аппроксимацию исходной функции, имеющую минимальную среднеквадратичную ошибку в определении исходной функции. Обобщенный ряд Фурье дает

Такой ряд дает минимум в среднем ошибки (погрешности).

Имеется 2 задачи разложения сигнала на простейшие функции:


  1. ^ Точное разложение на простейшие ортогональные функции (аналитическая модель сигнала, анализ поведения сигнала).
Эта задача реализуется на тригонометрических базисных функциях, так как они имеют простейшую форму и являются единственными функциями, сохраняющими свою форму при прохождении через линейные цепи; при использовании этих функций можно применять символический метод ().

  1. ^ Аппроксимация сигналов процессов и характеристик , когда требуется свести к минимуму число членов обобщенного ряда. К ним относятся: полиномы Чебышева, Эрмита, Лежандра.

^ Гармонический анализ периодических сигналов

При разложении периодического сигнала s(t) в ряд Фурье по тригонометрическим функциям в качестве ортогональной системы берут

Интервал ортогональности определяется нормой функции

Среднее значение функции за период.

- основная формула для

определения ряда Фурье

Модуль - четная функция, фаза - нечетная функция.

Рассмотрим пару для к-го члена

- разложение ряда Фурье


^ Примеры спектров периодических сигналов


  1. Прямоугольное колебание . Подобное колебание, часто называемое меандром (Меандр - греческое слово, обозначающее “орнамент”), находит особенно широкое применение в измерительной технике.
^ Гармонический анализ непериодических сигналов



Пусть сигнал s(t) задан в виде некоторой функции, отличной от нуля в промежутке (t 1 ,t 2). Этот сигнал должен быть интегрируем.

Возьмем бесконечный отрезок времени Т, включающий в себя промежуток (t 1 ,t 2). Тогда . Спектр непериодического сигнала является сплошным. Заданный сигнал можно представить в виде ряда Фурье , где

На основании этого получим:

Поскольку Т®µ, то сумму можно заменить интегрированием, а W 1 на dW и nW 1 на W. Таким образом мы прейдем к двойному интегралу Фурье

,





где - спектральная плотность сигнала. Когда интервал (t 1 ,t 2) не уточнен интеграл имеет бесконечные пределы. Это есть обратное и прямое преобразование Фурье, соответственно.

Если сравнить выражения для огибающей сплошного спектра (модуль спектральной плотности) непериодического сигнала и огибающей линейчатого спектра периодического сигнала, то будет видно, что они совпадают по форме, но отличаются масштабом .

Следовательно, спектральная плотность S(W) обладает всеми основными свойствами комплексного ряда Фурье. Т. е. можно записать , где

, а .

Модуль спектральной плотности является нечетной функцией и его можно рассматривать как амплитудно-частотную характеристику. Аргумент - нечетная функция рассматриваемая как фазо-частотная характеристика.

На основании этого сигнал можно выразить следующим образом

Из четности модуля и нечетности фазы следует, что подынтегральная функция в первом случая является четной, а во втором - нечетной относительно W. следовательно второй интеграл равен нулю (нечетная функция в четных пределах) и окончательно .

Отметим, что при W=0 выражение для спектральной плотности равно площади под кривой s(t)

.
^ Свойства преобразования Фурье

Сдвиг сигнала во времени

Пусть сигнал s 1 (t) произвольной формы обладает спектральной плотностью S 1 (W). При задержке этого сигнала на время t 0 получим новую функцию времени s 2 (t)=s 1 (t-t 0). Спектральная плотность сигнала s 2 (t) будет следующая . Введем новую переменную . Отсюда .

Любому сигналу соответствует своя спектральная плотность. Сдвиг сигнала по оси времени приводит к изменению его фазы, а модуль этого сигнала не зависит от положения сигнала на оси времени.

^ Изменение масштаба времени



Пусть сигнал s 1 (t) подвергается сжатию во времени. Новый сигнал s 2 (t) связан с исходным соотношением .

Длительность импульса s 2 (t) в n раз меньше, чем исходного. Спектральная плотность сжатого импульса . Введем новую переменную . Получим .

При сжатии сигнала в n раз во столько же раз расширяется его спектр. Модуль спектральной плотности при этом уменьшатся в n раз. При растяжении сигнала во времени имеют место сужение спектра и увеличение модуля спектральной плотности.

^ Смещение спектра колебаний

Домножим сигнал s(t) на гармонический сигнал cos(w 0 t+q 0). Спектр такого сигнала

Разобьем его на 2 интеграла .

Полученное соотношение можно записать в следующей форме

Таким образом умножение функции s(t) на гармоническое колебание приводит к расщеплению спектра на 2 части, смещенные на ±w 0 .

^ Дифференцирование и интегрирование сигнала

Пусть дан сигнал s 1 (t) со спектральной плотностью S 1 (W). Дифференцирование этого сигнала дает соотношение . Интегрирование же приводит к выражению .

^ Сложение сигналов

При сложении сигналов s 1 (t) и s 2 (t) обладающих спектрами S 1 (W) и S 2 (W) суммарному сигналу s 1 (t)+s 2 (t) соответствует спектр S 1 (W)+S 2 (W) (т. к. преобразование Фурье является линейной операцией).

^ Произведение двух сигналов

Пусть . Такому сигналу соответствует спектр

Представим функции в виде интегралов Фурье .

Подставляя второй интеграл в выражение для S(W) получим

Следовательно .

Т. е. спектр произведения двух функций времени равен свертке их спектров (с коэффициентом 1/2p).

Если , то спектр сигнала будет .

^ Взаимная обратимость частоты и времени

в преобразовании Фурье


  1. Пусть s(t) - четная функция относительно времени.
Тогда . Так как второй интеграл от нечетной функции в симметричных пределах равен нулю. Т. е. функция S(W) является вещественной и четной относительно W.

Если предположить, что s(t) - четная функция. Запишем s(t) в виде . Произведем замену W на t и t на W, получим .

Если спектр имеет форму какого сигнала, то тогда сигнал соответствующий этому спектру повторяет форму спектра подобного сигнала.
^ Распределение энергии в спектре непериодического сигнала

Рассмотрим выражение , в котором f(t)=g(t)=s(t). В этом случае данный интеграл равен . Это соотношение носит название равенства Парсеваля.

Энергетический расчет полосы пропускания: , где , а .
^ Примеры спектров непериодических сигналов

Прямоугольный импульс



Определяется выражением

Найдем спектральную плотность



.
При удлинении (растягивании) импульса расстояние между нулями сокращается, значение S(0) при этом увеличивается. Модуль функции можно рассматривать как АЧХ, а аргумент как ФЧХ спектра прямоугольного импульса. Каждая перемена знака учитывает приращение фазы на p.

При отсчете времени не от середины импульса, а от фронта ФЧХ спектра импульса должна быть дополнена слагаемым , учитывающим сдвиг импульса на время (результирующая ФЧХ показана пунктиром).

Колоколообразный (гауссовский) импульс

Определяется выражением . Постоянная а имеет смысл половины длительности импульса, определяемой на уровне е -1/2 от амплитуды импульса. Таким образом, полная длительность импульса .

Спектральная плотность сигнала.



Для удобства дополним показатель степени до квадрата суммы , где величина d определяется из условия , откуда . Таким образом, выражение для спектральной плотности можно привести к виду .

Переходя к новой переменной получим . Учитывая, что входящий в это выражение интеграл равен , окончательно получим , где .

Ширина спектра импульса

Гауссовский импульс и его спектр выражаются одинаковыми функциями и обладают свойством симметрии. Для него соотношение длительности импульса и полосы пропускания является оптимальным, т. е. при данной длительности импульса гауссовский импульс имеет минимальную полосу пропускания.

дельта-импульс (единичный импульс)



Сигнал задан соотношением . Ее можно получить из вышеперечисленных импульсов путем устремления t и к нулю.

Известно, что , следовательно спектр такого сигнала будет постоянным (это есть площадь импульса, равная единице).

Для создания такого импульса необходимы все гармоники.

Экспоненциальный импульс



Сигнал вида , c>0.

Спектр сигнала находится следующим образом

Запишем сигнал в другой форме .

Если , то . Это означает, что мы получим единичный скачек. При получаем следующее выражение для спектра сигнала .




Отсюда модуль


Радиосигналы
Модуляция

Пусть дан сигнал , в нем A(t) является амплитудной модуляцией, w(t) - частотная модуляция, j(t) - фазовая модуляция. Две последние образуют угловую модуляцию. Частота w должна быть велика по сравнению с наивысшей частотой спектра сигнала W (ширины спектра занимаемой сообщением).

Модулированное колебание имеет спектр, структура которого зависит как от спектра передаваемого сообщения, так и от вида модуляции.

Возможно существование нескольких видов модуляции: непрерывная, импульсная, кодоимпульсная.
^ Амплитудная модуляция



Общее выражение для амплитудно-модулированного колебания выглядит следующим образом

Характер огибающей A(t) определяется видом передаваемого сообщения.

Если сигнал сообщения , то огибающую модулированного колебания можно представить в виде . Где W - частота модуляции, g - начальная фаза огибающей, k - коэффициент пропорциональности, DА m - абсолютное изменение амплитуды. Отношение - коэффициент модуляции. Исходя из этого можно записать . Тогда амплитудно-модулированное колебание запишется в следующем виде .

При неискаженной модуляции (М£1) амплитуда колебания изменяется в пределах от до .

Максимальному значению соответствует пиковая мощность . Средняя же за период модуляции мощность .

Мощность для передачи амплитудно-модулированного сигнала больше чем для передачи простого сигнала.

Спектр амплитудно-модулированного сигнала

Пусть модулированное колебание определяется выражением

Преобразуем это выражение



Первое слагаемое - исходное немодулированное колебание. Второе и третье - колебания появляющиеся в процессе модуляции Частоты этих колебаний (w 0 ±W) называются боковыми частотами модуляции. Ширина спектра 2W.

В случая когда сигнал есть сумма , где , а . Причем , где .

Отсюда получим





Каждая из составляющих спектра модулирующего сигнала независимо друг от друга образуют две боковых частоты (левую и правую). Ширина спектра в этом случае 2W 2 =2W max 2 максимальных частоты модулирующего сигнала.

На векторной диаграмме ось времени вращается по часовой стрелке с угловой частотой w 0 (отсчет ведется от горизонтальной оси) . Амплитуды и фазы боковых лепестков всегда равны между собой, поэтому результирующий их вектор DF будет всегда направлен по линии OD. Итоговый вектор OFизменяется только по амплитуде не меняя своего углового положения.

Пусть имеется сигнал Запишем в другом виде .

Сигналу соответствует спектр , где , а S A - спектральная плотность огибающей. Отсюда следует окончательное выражение для спектра

Это объясняется стробирующим действием d-функции, т. е. все составляющие равны нулю кроме частот w±w н (это те значения при которых d-функция равна нулю). Даже если спектр не дискретный, то все равно имеются боковые составляющие.
^ Частотная модуляция

Пусть есть колебание с частотной модуляцией . Однако частота - это производная от фазы. Если изменить фазу, то текущая частота тоже изменится.

Частотная модуляция

,

Где представляет собой амплитуду частотного отклонения. Для краткости в дальнейшем будем называть девиацией частоты или просто девиацией .

Где w 0 t - текущее изменение фазы; - индекс угловой модуляции.

Предположим , где .

,

Где m - коэффициент модуляции.

Таким образом, гармоническая модуляция фазы с индексом эквивалентна частотной модуляции с девиацией .

При гармоническом модулирующем сигнале различие между ЧМ и ФМ можно выявить, только изменяя частоту модуляции.

При ЧМ девиация W .

При ФМ величина пропорциональна амплитуде модулирующего напряжения и не зависит от частоты модуляции W .

Для монохроматического модулирующего сигнала фазовая и частотная модуляции неразличимы.
^ Спектр сигнала при угловой модуляции

Пусть задано колебание

Имеются два амплитудно-модулированных сигнала. Такие составляющие, которые отличаются на называются квадратурными составляющими.

Пусть . Это совпадает с . Здесь q 0 =0, g=0.

Cos и sin - функции периодические и разлагаются в ряд Фурье

J(m) - Бесселева функция 1 рода.

Спектр при угловой модуляции бесконечно большой, в отличие от спектра при амплитудной модуляции.

При угловой модуляции спектр частотно-модулированного колебания даже при модуляции 1 частотой состоит из бесчисленного количества гармоник, группирующихся около несущей частоты.

Недостатки: спектр очень широкий.

Достоинства: наиболее помехоустойчивая.

Рассмотрим случай, когда m << 1.

Если m очень мал, то в спектре присутствуют только 2 боковые частоты.



Ширина спектра (m << 1) будет равна 2W.

Если m=0,5¸1, то появляется вторая пара боковых частот w±2W. Ширина спектра равна 4W.

Если m=1¸2, то появляются третья и четвертая гармоники w±3W, w±4W.

Ширина спектра при m очень больших

ШС=2mW=2w д

Если коэффициент модуляции значительно меньше единицы, то такая модуляция называется быстрой , тогда w д << W.

Если m >> 1, то это медленная модуляция, тогда w д >> W.
^ Спектр радиоимпульса с частотно-модулированным

заполнением



, где

Где ,

Основной параметр линейно-частоно модулированного сигнала (ЛЧМ) или база сигнала ЛЧМ.

B может быть и положительной и отрицательной.

Предположим, что b>0

Спектр сигнала представляет собой 2 компоненты:

1 - всплеск около частоты w о;

2 - всплеск около частоты -w о.

При определении спектральной плотности в области положительных частот второе слагаемое можно отбросить.

Дополним экспоненту до полного квадрата

, где С(х) и S(х) - интегралы Френеля

Модуль спектральной плотности ЛЧМ сигнала

Фаза спектральной плотности ЛЧМ сигнала



Чем больше m, тем ближе форма спектра к прямоугольной с шириной спектра . Зависимость фазы является квадратичной.

При m стремящемся к большим значениям форма АЧХ стремится к прямоугольной, а фаза состоит из двух частей:

1). дает параболу

2). стремится к

При большом m и :

Тогда значение модуля: .
Смешанная амплитудно-частотная модуляция

Спектральная плотность косинусного квадратурного колебания при =0 будет

При определении спектра синусного квадратурного колебания фазовый угол следует приравнять -90°. Следовательно,

Таким образом, окончательно спектральная плотность колебания определяется выражением

Переходя к переменной , получаем

.

Структура спектра сигнала при смешанной амплитудно-частотной модуляции зависит от соотношения и вида функций А(t) и q(t).

При частотной модуляции фазы нечетных гармоник изменяются на 180°. Одновременная модуляция и по частоте, и по амплитуде при некоторых соотношениях А(t) и q(t) приводит к нарушению симметричности спектра на только по фазе, но и по амплитуде.

Если q(t) является нечетной функцией от t, то при любых А(t) спектр выходного сигнала является несимметричным.

Пусть А(t) - четная функция, тогда А с (t) - четная, А s (t) - нечетная, является чисто вещественным, симметричным относительно W, четным, а - чисто мнимым, несимметричным относительно W и нечетным.

С учетом множителя j спектр выходного колебания является вещественным.. В результате спектр получился несимметричным, но по отношению к w=0 он является симметричным. Такой же результат можно получить и при нечетной функции А(t). В этом случае спектр является чисто мнимым и нечетным.

Для симметричности выходного спектра требуется четность q(t) при условии, что А(t) было либо четным, либо нечетным относительно t. Если А(t) является суммой четных и нечетных функций, то выходной спектр несимметричен при любых условиях.

Фаза у ЛЧМ четная и амплитуда четная.

Причем

Выходной спектр получился симметричным.


  1. А(t) = четная функция + нечетная функция, а q(t) - четная функция.
Предположим, что , где .

Спектр получился несимметричным.
Узкополосный сигнал

Под ним понимается любой сигнал, у которого полоса частот, занимаемая сигналом значительно меньше несущей частоты: .

Где А s (t) - синфазная амплитуда, В s (t) - квадратурная амплитуда.

Комплексная амплитуда узкополосного сигнала .

,

Где - оператор вращения.

Простейшее колебание можно представить в форме , где . В этом выражении огибающая А(t) в отличие от А о является функцией времени, которую можно определить из условия сохранения заданной функции а(t)

Из этого выражения видно, что новая функция А(t) по существу не является “огибающей” в общепринятом смысле, так как она может пересекать кривую а(t) (вместо касания в точках, где А(t) имеет максимальное значение). То есть мы не верно определили огибающую и частоту. Существует метод мгновенной частоты - метод Гильберта для определения частоты.

Если сигнал , то тогда

Полная фаза сигнала , а мгновенная частота

Физическая огибающая .

Предположим, что выбрали опорную частоту не w о, а w о +Dw, тогда

, где .

Первое

Модуль комплексной огибающей равен физической огибающей и постоянен, не зависит от выбора частоты.

Второе свойство комплексной огибающей:

Модуль сигнала s(t) всегда меньше или равен u s (t). Равенство наступает тогда, когда cos w o t = 1. В эти моменты производная сигнала и производная огибающей равны.

Физическая огибающая совпадает с максимальным значением амплитуды сигнала.



Зная комплексную огибающую можно найти ее спектр, а через него сам сигнал.

,

.

Зная G(w) найдем U s (t).

Помножим на (-b-jt) и получим вещественную и мнимую части соответственно , . Отсюда амплитуда будет .
^ Аналитический сигнал

Пусть есть сигнал s(t) определяемый как . Разделим его на две составляющие .

В том выражении –– аналитический сигнал. Если ввести переменную то . То есть мы получили . Реальный сигнал есть , сигнал сопряженный по Гильберту . Аналитический сигнал есть .

, –– прямое и обратное преобразование Гильберта.
Определение несущей и огибающей по методу Гильберта

Амплитуда сигнала , его фаза . Значение мгновенной частоты .

Пример: . .

–– точное определение огибающей. Использование метода Гильберта позволяет давать однозначные и абсолютно достоверные значения огибающей и мгновенной частоты сигнала.

–– любой сигнал можно разложить в ряд Фурье.

–– сопряженный по Гильберту сигнал.

Если сигнал представлен не рядом Фурье, а интегралом Фурье, то справедливы следующие соотношения , .
^ Свойства аналитического сигнала


  1. Произведение аналитического сигнала z s (t) на сопряженный ему сигнал z s * (t) равно квадрату огибающей исходного (физического) сигнала s(t).


Иначе , где .
Преобразование Гильберта для узкополосного процесса

Пусть , тогда сопряженный по Гильберту сигнал .

Исходя из этого получим

Свойства преобразований Гильберта

––преобразование Гильберта, где Н() – оператор преобразования.



Пример . Сигнал s(t) – идеальный низкочастотный сигнал.

Частотные и временные характеристики

радиотехнических цепей



Пусть имеется линейный активный четырехполюсник.

1. Передаточная функция . Характеризует изменение сигнала на выходе относительно сигнала на входе. Модуль называют амплитудно-частотной характеристикой или просто частотной характеристикой. Аргумент –– фазо-частотная характеристика или просто фазовая.

2. Импульсная характеристика –– реакция цепи на единичный импульс. Характеризует изменение сигнала во времени. Связь с передаточной функцией осуществляется через обратное и прямое преобразование Фурье (соответственно) . Или же через преобразование Лапласа .

3. Переходная функция –– реакция цепи на единичный скачек. Это есть накопление сигнала за время t.
^ Апериодический усилитель



Схема замещения простейшего апериодического усилителя. Усилительный прибор представлен в виде источника тока SE 1 с внутренней проводимостью G i =1/R i . Емкость С включает в себя межэлектродную емкость активного элемента и емкость внешней цепи, шунтирующей нагрузочный резистор R н.
Передаточная функция такого усилителя

,



где S –– крутизна активного элемента, Е 1 – напряжение на входе.

Максимальный коэффициент усиления (при ) . Отсюда , где – время задержки.

Модуль передаточной характеристики –– АЧХ. Т. е. этот усилитель пропускает сигнал только в определенной полосе частот. ФЧХ –– .