Преобразование сигналов в параметрических цепях. Анализ преобразования сигналов линейными цепями в частотной области Синтезировать сигнал на выходе линейной цепи


Линейно-параметрические цепи-радиотехнические цепи, один или несколько параметров которых изменяются во времени по заданному закону, называют параметрическими (линейными цепями с переменными параметрами). Предполагается, что изменение какого-либо параметра осуществляют электронным методом с помощью управляющего сигнала. В линейно- параметрической цепи параметры элементов не зависят от уровня сигнала, но могут независимо изменяться во времени. Реально параметрический элемент получают из нелинейного элемента, на вход которого подают сумму двух независимых сигналов. Один из них несет информацию и имеет малую амплитуду, так что в области его изменений параметры цепи практически постоянны. Вторым является управляющий сигнал большой амплитуды, который изменяет положение рабочей точки нелинейного элемента, а следовательно, его параметр.

В радиотехнике широко применяют параметрические сопротивления R(t), параметрические индуктивности L(t) и параметрические емкости C(t).

Для параметрического сопротивления R(t) управляемым параметром является дифференциальная крутизна

Примером параметрического сопротивления может служить канал МДП- транзистора, на затвор которого подано управляющее (гетеродинное) переменное напряжение u Г (t). В этом случае крутизна его сток-затворной характеристики изменяется во времени и связана с управляющим напряжением зависимостью S(t) = S. Если к МДП-транзистору подключить еще и напряжение модулированного сигнала u(t) , то его ток определится выражением

Наиболее широко параметрические сопротивления применяют для преобразования частоты сигналов. Гетеродинирование - процесс нелинейного или параметрического смешивания двух сигналов разных частот для получения колебаний третьей частоты, в результате которого происходит смещение спектра исходного сигнала.

Рис. 24. Структурная схема преобразователя частоты

Преобразователь частоты (рис.24) состоит из смесителя (СМ) - параметрического элемента (например, МДП-транзистора, варикапа и т. д.), гетеродина (Г) - вспомогательного генератора гармонических колебаний с частотой ωг, служащего для параметрического управления смесителем, и фильтра промежуточной частоты (ФПЧ) - полосового фильтра

Принцип действия преобразователя частоты рассмотрим на примере переноса спектра однотонального АМ-сигнала. Допустим, что под воздействием гетеродинного напряжения

крутизна характеристики МДП-транзистора изменяется приближенно по закону

где S 0 и S 1 - соответственно среднее значение и первая гармоническая составляющая крутизны характеристики. При поступлении на преобразующий МДП-транзистор смесителя приемника АМ-сигнала

переменная составляющая выходного тока будет определяться выражением:

Пусть в качестве промежуточной частоты параметрического преобразователя выбрана частота

Прохождение сигналов через резистивные параметрические цепи. Преобразование частоты

12.1 (О). Идеальный источник ЭДС создает напряжение (В)и = 1.5 cos 2π · l0 7 t . К зажимам источника подключен резистивный элемент с переменной во времени проводимостью (См)G (t ) = 10 -3 + 2 · 10 -4 sin 2π · l0 6 t . Найдите амплитуду токаI т , имеющего частоту 9.9 МГц.

12.2(О). Вещательный приемник длинноволнового диапазона предназначен для приема сигналов в диапазоне частот отf c min = 150 кГц доf c max = 375 кГц. Промежуточная частота приемникаf пр = 465 кГц. Определите, в каких пределах следует перестраивать частоту гетеродинаf г данного приемника.

12.3(УО). В супергетеродинном приемнике гетеродин создает гармонические колебания с частотойf г = 7.5 МГц. Промежуточная частота приемникаf пр = 465 кГц; из двух возможных частот принимаемого сигнала основному каналу приема отвечает большая, а зеркальному каналу - меньшая частота. Для подавления зеркального канала на входе преобразователя частоты включен одиночный колебательный контур, настроенный на частоту основного канала. Найдите значение добротностиQ этого контура, при которой ослабление зеркального канала составит - 25 дБ по отношению к основному каналу приема.

12.4(О). Дифференциальная крутизна резистивного параметрического элемента, входящего в преобразователь частоты, изменяется по законуS диф (t ) =S 0 +S 1 cosω г t , гдеS 0 ,S 1 - постоянные числа,ω г - угловая частота гетеродина. Считая, что промежуточная частотаω пр известна, найдите частоты сигналаω с, при которых возникает эффект на выходе преобразователя.

12.5(Р). Проходная характеристика полевого транзистора, т.е. зависимость тока стокаi c (мА) от управляющего напряжения затвор - истоки зи (В) прии зи ≥ -2 В, аппроксимирована квадратичной параболой:i с = 7.5(u зи + 2) 2 . Ко входу транзистора приложено напряжение гетеродинаи зи =U m г cosω г t . Найдите закон изменения во времени дифференциальной крутизныS диф (t ) характеристикиi с =f (и зи).

12.6(УО). Применительно к условиям задачи 12.5 выберите амплитуду напряжения гетеродинаU m г таким образом, чтобы обеспечить крутизну преобразованияS пр = 6 мА/В.

12.7(О). В преобразователе частоты использован полупроводниковый диод, ВАХ которого описана зависимостью (мА)

К диоду приложено напряжение гетеродина (В) u г = 1.2 cosω г t . Вычислите крутизну преобразованияS пр данного устройства.

12.8(УО). В диодном преобразователе частоты, который описан в задаче 12.7, к диоду приложено напряжение (В)u (t ) =U 0 + 1.2 cosω г t . Определите,

при каком напряжении смещенияU 0 < 0 крутизна преобразования составит величину 1.5 мА/В.

12.9(УО). Схема преобразователя частоты на полевом транзисторе изображена на рис. I.12.1. Колебательный контур настроен на промежуточную частотуω пр = |ω с -ω г |. Резонансное сопротивление контураR рез = 18 кОм. Ко входу преобразователя приложена сумма напряжения полезного сигнала (мкВ)u с (t ) = 50 cosω c t и напряжения гетеродина (В)u г (t ) = 0.8 cosω г t . Характеристика транзистора описана в условиях задачи 12.5. Найдите амплитудуU m пр выходного сигнала на промежуточной частоте.

Прохождение сигналов через параметрические реактивные цепи. Параметрические усилители

12.10(Р). Дифференциальная емкость параметрического диода (варактора) в окрестности рабочей точкиU 0 зависит от приложенного напряженияи следующим образом:С диф (u ) =b 0 +b 1 (u -U 0), гдеb 0 (пФ) иb 1 (пФ/В) - известные числовые коэффициенты. К варактору приложено напряжениеu =U 0 +U m cosω 0 t . Получите формулу, описывающую токi (t ) через варактор.

12.11(УО). Дифференциальная емкость варактора описана выражениемC диф (u ) =b 0 +b 1 (u -U 0) +b 2 (u -U 0) 2 . К зажимам варактора приложено напряжениеu =U 0 +U m cosω 0 t . Вычислите амплитудуI 3 третьей гармоники тока через варактор, еслиf 0 = 10 ГГц,U m =1.5 В,b 2 = 0.16 пФ/В 2 .

12.12(О). Варактор имеет параметры:b 0 = 4 пФ,b 2 = 0.25 пФ/В 2 . К варактору приложено высокочастотное напряжение с амплитудойU m = 0.4 В. Определите, во сколько раз возрастет амплитуда первой гармоники токаI 1 если величинаU m станет равной 3 В.

12.13(УО). Емкость параметрического конденсатора изменяется во времени по законуС (t ) =С 0 ехр (-t /τ) σ (t ), гдеС 0 , τ - постоянные величины. К конденсатору подключен источник линейно нарастающего напряженияu (t ) =at σ(t ). Вычислите закон изменения во времени токаi (t ) в конденсаторе.

12.14(УО). Применительно к условиям задачи 12.13 найдите момент времениt 1 , в который мгновенная мощность, потребляемая конденсатором из источника сигнала, максимальна, а также момент времениt 2 , в который максимальной оказывается мощность, отдаваемая конденсатором во внешние цепи.

12.15(Р). Одноконтурный параметрический усилитель подключен со стороны входа к источнику ЭДС (генератору) с внутренним

сопротивлениемR г = 560 Ом. Усилитель работает на резистивную нагрузку с сопротивлениемR н = 400 Ом. Найдите величину вносимой проводимостиG вн, которая обеспечивает коэффициент усиления мощностиК Р = 25 дБ.

12.16(О). Для параметрического усилителя, описанного в задаче 12.15, найдите критическую величину вносимой проводимостиG вн кр, при которой система оказывается на пороге самовозбуждения.

12.17(УО). К зажимам управляемого параметрического конденсатора приложено напряжение сигналаu (t ) =U m cos(ω c t +π/3). Емкость конденсатора изменяется во времени по законуC (t ) =C 0 " гдеφ н - начальный фазовый угол колебания накачки. Выберите наименьшее по модулю значениеφ н, которое обеспечивает нулевое значение вносимой проводимости.

12.18(О). Применительно к условиям задачи 12.17 для значений параметровС 0 = 0.3 пФ, β = 0.25 иω с = 2π · 10 9 с -1 вычислите наибольшее по модулю значение отрицательной проводимостиG вн max , а также наименьший по модулю фазовый уголсра, обеспечивающий такой режим.

12.19(Р). Двухконтурный параметрический усилитель предназначен для работы на частотеf с = 2 ГГц. Холостая частота усилителяf хол = 0.5 ГГц. Использованный в усилителе варактор изменяет свою емкость (пФ) с частотой накачкиω н по законуС (t ) = 2(1 + 0.15 cosω н t ). Источник сигнала и устройство нагрузки имеют одинаковые активные проводимостиG г =G н = 2 · 10 -3 См. Вычислите величину резонансного сопротивления холостого контураR рез.хол, при котором в усилителе возникает самовозбуждение.

Интересными и полезными для радиотехнических приложений свойствами обладают линейные системы, которые описываются нестационарными системными операторами зависящими от времени. Закон преобразования входного сигнала здесь имеет вид

причем благодаря линейности системы

при любых постоянных

Цепи, описываемые равенством (12.1), называются параметрическими. Термин связан с тем, что в составе таких цепей обязательно присутствуют элементы, параметры которых зависят от времени. В радиотехнических цепях находят применение следующие параметрические резисторы конденсаторы и индуктивности

Отличительная черта линейной параметрической системы - наличие вспомогательного источника колебаний, управляющего параметрами элементов.

Важная роль, отводимая в радиотехнике параметрическим цепям, обусловлена их способностью преобразовывать спектры входных сигналов, а также возможностью создания малошумящих параметрических усилителей.

12.1. Прохождение сигналов через резистивные параметрические цепи

Параметрическую цепь называют резистивной, если ее системный оператор имеет числа , зависящего от времени и служащего коэффициентом пропорциональности между входным и выходным сигналами:

Простейшей системой такого вида служит параметрический резистор с сопротивлением . Закон, связывающий мгновенные значения напряжения и тока в этом двухполюснике, таков:

Параметрический резистивный элемент может описываться также переменнойво времени проводимостью

Реализация параметрических резистивных элементов.

На практике параметрически управляемые резисторы создают следующим образом.

На вход безынерционного нелинейного двухполюсника с вольт-амперной характеристикой подают сумму даух колебаний: управляющего напряжения и напряжения сигнала При этом управляющее напряжение значительно превышает по амплитуде полезный сигнал. Ток в нелинейном двухполюснике можно записать, разложив вольт-амперную характеристику в ряд Тейлора относительно мгновенного значения управляющего напряжения:

Амплитуду сигнала выбирают столь малой, что в формуле (12.5) можно пренебречь вторыми и более высокими степенями величины Обозначив через приращение тока в двухполюснике, вызванное наличием сигнала, получим

Ниже будут изучены важные применения параметрических резистивных элементов рассмотренного вида.

Преобразование частоты.

Так называют трансформацию модулированного сигнала, связанную с переносом его спектра из окрестности несущей частоты в окрестность некоторой промежуточной частоты совершаемую без изменения закона модуляции.

Преобразователь частоты состоит из смесителя - параметрического безынерционного элемента, и гетеродина - вспомогательного генератора гармонических колебаний с частотой служащего для параметрического управления смесителем. Под действием напряжения гетеродина дифференциальная крутизна вольт-амперной характеристики смесителя периодически изменяется во времени по закону

Если на входе преобразователя частоты действует напряжение АМ-сигнала , в соответствии с выражениями (12.6) и (12.7) в выходном токе появляется составляющая ПО см

В качестве промежуточной принято выбирать частоту ток на промежуточной частоте

является АМ-колебанием с тем же законом модуляции, что и входной сигнал.

Для выделения составляющих спектра с частотами, близкими к промежуточной частоте, в выходную цепь преобразователя включают колебательный контур, настроенный на частоту

Рис. 12.1. Структурная схема супергетеродинного приемника

Преобразование частоты широко используется в радиоприемных устройствах - так называемых супергетеродинах. Структурная схема супергетеродинного приемника изображена на рис. 12.1.

Сигнал, принятый антенной, через фильтрующие входные цепи и усилитель радиочастоты (УРЧ) поступает на преобразователь. Выходной сигнал преобразователя является модулированным колебанием с несущей частотой, равной промежуточной частоте приемника. Основное усиление приемника и его частотная избирательность, т. е. способность выделять полезный сигнал из помех с другими частотами, обеспечиваются узкополосным усилителем промежуточной частоты (УПЧ).

Большое достоинство супергетеродина - неизменность промежуточной частоты; для настройки приемника приходится перестраивать лишь гетеродин и в некоторых случаях колебательные системы, которые имеются во входных цепях и в УРЧ.

Отметим, что преобразователь частоты одинаково реагирует на сигналы с частотами радиотехнике говорят, что возможен прием как по основному, так и по зеркальному каналу. Во избежание неоднозначности настройки приемника требуется обеспечить такую избирательность резонансных систем, включенных между антенной и преобразователем частоты, чтобы практически подавить сигналы зеркального канала.

Крутизна преобразования.

Эффективность работы преобразователя частоты принято характеризовать особым параметром - крутизной преобразования которая служит коэффициентом пропорциональности между амплитудой тока промежуточной частоты и амплитудой немодулированного напряжения сигнала, т. е. Как следует из соотношения (12.8),

Итак, крутизна преобразования равна половине амплитуды первой гармоники дифференциальной крутизны параметрического элемента.

Предположим, что вольт-амперная характеристика нелинейного элемента, входящего в преобразователь частоты, квадратична: . В отсутствие сигнала к элементу приложена сумма напряжений смещения и гетеродина:

Дифференциальная крутизна преобразователя изменяется во времени по закону

Обращаясь к формуле (123), видим, что в данном случае

(12.11)

Таким образом, при постоянном уровне полезного сигнала на входе амплитуда выходного сигнала преобразователя пропорциональна амплитуде напряжения гетеродина.

Пример 12.1. В преобразователе частоты использован нелинейный элемент (транзистор) с характеристикой имеющей параметр Резонансное сопротивление колебательного контура в коллекторной цепи . Амплитуда смодулированного входного сигнала амплитуда напряжения гетеродина . Найти значение - амплитуду напряжения промежуточной частоты на выходе преобразователя.

По формуле (12.11) вычисляем крутизну преобразования Амплитуда тока промежуточной частоты в цепи коллектора . Полагая выходное сопротивление транзистора достаточно высоким, гак что можно пренебречь его шунтирующим действием на колебательный контур, находим

Синхронное детектирование.

Предположим, что в преобразователе частоты гетеродин настроен точно на частоту сигнала, поэтому дифференциальная крутизна изменяется во времени по закону

Подав на вход такого устройства АМ-сигнала , получаем выражение для тока обусловленного сигналом:

Выражение, стоящее здесь в квадратных скобках, содержит постоянную составляющую которая зависит от сдвига фазы между сигналом гетеродина и несущим колебанием входного сигнала. Поэтому в спектре выходного тока появится низкочастотная составляющая

этот ток пропорционален переменной амплитуде АМ-сигнала.

Синхронным детектором называют преобразователь частоты, работающий при условии ; для выделения полезного сигнала на выходе включен ФНЧ, например, параллельная RC-цепь.

При использовании синхронных детекторов на практике между несущим колебанием входного сигнала и колебанием гетеродина должно поддерживаться жесткое фазовое соотношение.

Наиболее благоприятен режим работы при если же , то полезный выходной сигнал отсутствует. Чувствительность синхронного детектора к сдвигу фаз позволяет использовать его для измерения фазовых соотношений между двумя когерентными колебаниями.

Ниже показана конкретная методика расчета синхронного детектора.

Пример 12.2. В синхронном детекторе использован транзистор, характеристика которого аппроксимируется двумя отрезками прямых. Параметры аппроксимации: . Амплитуда напряжения гетеродина , постоянное напряжение смещения отсутствует Немодулированное напряжение полезного сигнала с амплитудой сдвинуто по фазе относительно колебаний гетеродина на угол . Определить изменение уровня постоянного напряжения на выходе синхронного детектора, вызванное полезным сигналом, если сопротив ление резистора .

При данном виде вольт-амперной характеристики нелинейного элемента дифференциальная крутизна может принимать лишь два значения:

Поэтому график изменения дифференциальной крутизны во времени представляет собой периодическую последовательность прямоугольных видеоимпульсов. Угол отсечки тока , определяющий длительность этих импульсов, найдем по формуле (см. гл. 2)

Разлагая функцию в ряд Фурье, вычисляем амплитуду первой гармоники крутизны:

Полезный сигнал вызывает согласно (12.13) приращение тока через транзистор на величину . Отсюда находим изменение уровня постоянного напряжения на выходе синхронного детектора:

Спектр сигнала на выходе параметрического резистивного элемента.

Анализ работы преобразователя частоты и синхронного детектора убеждает, что в параметрическом резистивном элементе возникают спектральные составляющие, которые отсутствуют на входе этого элемента.

Рассмотрим параметрическое преобразование вида (12.3) с общих позиций спектрального анализа. Очевидно, параметрический резистивный элемент функционирует как перемножитель входного сигнала и управляющего колебания

Запишем следующее соответствие между сигналами и их преобразованиями Фурье:

На основании теоремы о спектре произведения сигналов (см. гл. 2) спектральная плотность выходного сигнала представляет собой свертку

(12.14)

В прикладном отношении большой интерес представляет случай, когда управляющее колебание является периодическим с некоторым заданным периодом и может быть представлено рядом Фурье

(12.15)

где - угловая частота управляющего сигнала.

Как известно, подобный неинтегрируемый сигнал имеет спектральную плотность, отличную от нуля лишь в дискретных точках на оси частот:

(12.16)

Подставив данное выражение в формулу (12.14), получим спектр сигнала на выходе параметрического элемента:

(12.17)

Спектр стробированного сигнала.

Анализ общей формулы (12.17) удобно провести применительно к частному, но широко распространенному на практике случаю. Пусть управляющая функция на протяжении каждого периода равна единице в пределах отрезка времени длительностью ; в остальные моменты времени функция равна нулю.

В радиотехнике операцию умножения сигнала на функцию подобного вида называют стробированием сигнала.

Легко убедиться, что коэффициенты комплексного ряда Фурье (12.15) применительно к рассматриваемой стробирующей функции выражаются следующим образом:

(12.18)

где - скважность стробирукяцей последовательности.

Подстановка этого результата в формулу (12.17) приводит к выводу о том, что спектральная плотность стробированного сигнала

Классический метод анализа процессов в линейных цепях часто оказывается связанным с необходимостью проведения громоздких преобразований.

Альтернативой классическому методу является операторный (операционный) метод. Его сущность состоит в переходе посредством интегрального преобразования над входным сигналом от дифференциального уравнения к вспомогательному алгебраическому (операционному) уравнению. Затем находится решение этого уравнения, из которого с помощью обратного преобразования получают решение исходного дифференциального уравнения.

В качестве интегрального преобразования наиболее часто используют преобразование Лапласа, которое для функции s (t ) дается формулой:

где p - комплексная переменная: . Функция s(t ) называется оригиналом, а функция S (p ) - ее изображением.

Обратный переход от изображения к оригиналу осуществляется с помощью обратного преобразования Лапласа

Выполнив преобразование Лапласа обеих частей уравнения (*), получим:

Отношение изображений Лапласа выходного и входного сигналов носит название передаточной характеристики (операторного коэффициента передачи) линейной системы:

Если передаточная характеристика системы известна, то для нахождения выходного сигнала по заданному входному сигналу необходимо:

· - найти изображение Лапласа входного сигнала;

· - найти изображение Лапласа выходного сигнала по формуле

· - по изображению S вых (p ) найти оригинал (выходной сигнал цепи).

В качестве интегрального преобразования для решения дифференциального уравнения может использоваться также преобразование Фурье, являющееся частным случаем преобразования Лапласа, когда переменная p содержит только мнимую часть. Отметим, что для того чтобы к функции можно было применить преобразование Фурье, она должна быть абсолютно интегрируемой. Это ограничение снимается в случае преобразования Лапласа.

Как известно, прямое преобразование Фурье сигнала s (t ), заданного во временной области, является спектральной плотностью этого сигнала:

Выполнив преобразование Фурье обеих частей уравнения (*), получим:


Отношение изображений Фурье выходного и входного сигналов, т.е. отношение спектральных плотностей выходного и входного сигналов, называется комплексным коэффициентом передачи линейной цепи:

Если комплексный коэффициент передачи линейной системы известен, то нахождение выходного сигнала для заданного входного сигнала производят в следующей последовательности:

· определяют с помощью прямого преобразования Фурье спектральную плотность входного сигнала;

· определяют спектральную плотность выходного сигнала:

· с помощью обратного преобразования Фурье находят выходной сигнал, как функцию времени

Если для входного сигнала существует преобразование Фурье, то комплексный коэффициент передачи может быть получен из передаточной характеристики заменой р на j .

Анализ преобразования сигналов в линейных цепях с использованием комплексного коэффициента передачи называется методом анализа в частотной области (спектральным методом).

На практике К (j ) часто находят методами теории цепей на основании принципиальных схем, не прибегая к составлению дифференциального уравнения. Эти методы базируются на том, что при гармоническом воздействии комплексный коэффициент передачи может быть выражен в виде отношения комплексных амплитуд выходного и входного сигналов

линейный цепь сигнал интегрирующий


Если входной и выходной сигналы являются напряжениями, то K (j ) является безразмерным, если соответственно током и напряжением, то K (j ) характеризует частотную зависимость сопротивления линейной цепи, если напряжением и током, то - частотную зависимость проводимости.

Комплексный коэффициент передачи K (j ) линейной цепи связывает между собой спектры входного и выходного сигналов. Как и любая комплексная функция, он может быть представлен в трех формах (алгебраической, показательной и тригонометрической):

где - зависимость от частоты модуля

Зависимость фазы от частоты.

В общем случае комплексный коэффициент передачи можно изобразить на комплексной плоскости, откладывая по оси действительных величин, - по оси мнимых значений. Полученная при этом кривая называется годографом комплексного коэффициента передачи.

На практике большей частью зависимости К () и k () рассматриваются отдельно. При этом функция К () носит название амплитудно-частотной характеристики (АЧХ), а функция k () - фазо-частотной характеристики (ФЧХ) линейной системы. Подчеркнем, что связь между спектром входного и выходного сигналов существует только в комплексной области.

В нелинейных электрических цепях связь между входным сигналом U Вх. (T ) и выходным сигналом U Вых. (T ) описывается нелинейной функциональной зависимостью

Такую функциональную зависимость можно рассматривать как математическую модель нелинейной цепи.

Обычно нелинейная электрическая цепь представляет совокупность линейных и нелинейных двухполюсников. Для описания свойств нелинейных двухполюсников часто пользуются их вольтамперными характеристиками (ВАХ). Как правило, ВАХ нелинейных элементов получают экспериментально. В результате эксперимента ВАХ нелинейного элемента получают в виде таблицы. Этот способ описания пригоден для анализа нелинейных цепей с помощью ЭВМ.

Для изучения процессов в цепях, содержащих нелинейные элементы, необходимо отобразить ВАХ в математической форме, удобной для расчетов. Для использования аналитических методов анализа требуется подобрать аппроксимирующую функцию, достаточно точно отражающую особенности экспериментально снятой характеристики. Чаще всего используются следующие способы аппроксимации ВАХ нелинейных двухполюсников.

Показательная аппроксимация. Из теории работы p-n перехода следует, что вольт-амперная характеристика полупроводникового диода при u>0 описывается выражением

. (7.3)

Показательную зависимость часто используют при изучении нелинейных цепей, содержащих полупроводниковые приборы. Аппроксимация вполне точна при значениях тока, не превышающих несколько миллиампер. При больших токах экспоненциальная характеристика плавно переходит в прямую линию из-за влияния объемного сопротивления полупроводникового материала.

Степенная аппроксимация. Этот способ основан на разложении нелинейной вольтамперной характеристики в ряд Тейлора, сходящийся в окрестности рабочей точки U 0 :

Здесь коэффициенты …. – некоторые числа, которые можно найти из полученной экспериментально вольтамперной характеристики. Количество членов разложения зависит от требуемой точности расчетов.

Пользоваться степенной аппроксимацией при больших амплитудах сигналов нецелесообразно из-за существенного ухудшения точности.

Кусочно-линейная аппроксимация Применяется в случаях, когда в схеме действуют большие сигналы. Способ основан на приближенной замене реальной характеристики отрезками прямых линий с различными наклонами. Например, передаточная характеристика реального транзистора может быть аппроксимирована тремя отрезками прямых, как показано на рис.7.1.

Рис.7.1 .Передаточная характеристика биполярного транзистора

Аппроксимация определяется тремя параметрами: напряжением начала характеристики , крутизной , имеющей размерность проводимости и напряжением насыщения , при котором возрастание тока прекращается. Математическая запись аппроксимированной характеристики такова:

(7.5)

Во всех случаях ставится задача нахождения спектрального состава тока, обусловленного воздействием на нелинейную цепь гармонических напряжений. При кусочно-линейной аппроксимации схемы анализируют методом угла отсечки.

Рассмотрим для примера работу нелинейной цепи при больших сигналах. В качестве нелинейного элемента используем биполярный транзистор, работающий с отсечкой коллекторного тока. Для этого при помощи начального напряжения смещения Е См рабочая точка устанавливается таким образом, чтобы транзистор работал с отсечкой коллекторного тока, и одновременно подадим на базу входной гармонический сигнал.

Рис.7.2. Иллюстрация отсечки тока при больших сигналах

Угол отсечки θ – половина той части периода, в течение которой коллекторный ток не равен нулю, или, другими словами, часть периода от момента достижения коллекторным током максимума до момента, когда ток становится равным нулю – «отсекается».

В соответствии с обозначениями на рис.7.2 коллекторный ток для I > 0 описывается выражением

Разложение этого выражения в ряд Фурье позволяет найти постоянную составляющую I 0 и амплитуды всех гармоник коллекторного тока. Частоты гармоник кратны частоте входного сигнала, а относительные амплитуды гармоник зависят от угла отсечки. Анализ показывает, что для каждого номера гармоники существует оптимальный угол отсечки θ, При котором ее амплитуда максимальна:

. (7.7)

Рис.7.8 . Схема умножения частоты

Подобные схемы (рис.7.8) часто применяются для умножения частоты гармонического сигнала в целое число раз. Настройкой колебательного контура, включенного в коллекторную цепь транзистора, можно выделить нужную гармонику исходного сигнала. Угол отсечки устанавливается, исходя из максимального значения амплитуды заданной гармоники. Относительная амплитуда гармоники уменьшается с ростом ее номера. Поэтому описанный метод применим при коэффициентах умножения N ≤ 4. Применяя многократное умножение частоты, можно на основе одного высокостабильного генератора гармонических колебаний получить набор частот с такой же относительной нестабильностью частоты, как у основного генератора. Все эти частоты кратны частоте входного сигнала.

Свойство нелинейной цепи обогащать спектр, создавая на выходе спектральные составляющие, первоначально отсутствовавшие на входе, ярче всего проявляются, если входной сигнал представляет собой сумму нескольких гармонических сигналов с различными частотами. Рассмотрим случай воздействия на нелинейную цепь суммы двух гармонических колебаний. Вольтамперную характеристику цепи представим многочленом 2-й степени:

. (7.8)

Входное напряжение помимо постоянной составляющей содержит два гармонических колебания с частотами и , амплитуды которых равны и соответственно:

. (7.9)

Такой сигнал называется бигармоническим. Подставив этот сигнал в формулу (7.8), выполнив преобразования и сгруппировав члены, получим спектральное представление тока в нелинейном двухполюснике:

Видно, что в спектре тока присутствуют слагаемые, входящие в спектр входного сигнала, вторые гармоники обоих источников входного сигнала а также гармонические составляющие с частотами ω1 ω2 и ω1 + ω2 . Если степенное разложение вольтамперной характеристики представлено многочленом 3-й степени, спектр тока будет содержать также частоты . В общем случае при воздействии на нелинейную цепь нескольких гармонических сигналов с разными частотами в спектре тока появляются комбинационные частоты

Где – любые целые числа, положительные и отрицательные, включая нуль.

Возникновение комбинационных составляющих в спектре выходного сигнала при нелинейном преобразовании обусловливает ряд важных эффектов, с которыми приходится сталкиваться при построении радиоэлектронных устройств и систем. Так, если один из двух входных сигналов промодулирован по амплитуде, то происходит перенос модуляции с одной несущей частоты на другую. Иногда за счет нелинейного взаимодействия наблюдается усиление или подавление одного сигнала другим.

На основе нелинейных цепей осуществляется детектирование (демодуляция) амплитудно-модулированных (АМ) сигналов в радиоприемниках. Схема амплитудного детектора и принцип его работы поясняются на рис.7.9.

Рис.7.9. Схема амплитудного детектора и форма выходного тока

Нелинейный элемент, вольтамперная характеристика которого аппроксимирована ломаной линией, пропускает только одну (в данном случае положительную) полуволну входного тока. Эта полуволна создает на резисторе импульсы напряжения высокой (несущей) частоты с огибающей, воспроизводящей форму огибающей амплитудно-модулированного сигнала. Спектр напряжения на резисторе содержит частоту несущей , ее гармоники и низкочастотную составляющую, которая примерно вдвое меньше амплитуды импульсов напряжения. Эта составляющая имеет частоту , равную частоте огибающей, т. е. представляет собой продетектированный сигнал. Конденсатор совместно с резистором образует фильтр низких частот. При выполнении условия

(7.12)

В спектре выходного напряжения остается только частота огибающей. При этом также происходит увеличение выходного напряжения за счет того, что при положительной полуволне входного напряжения конденсатор быстро заряжается через малое сопротивление открытого нелинейного элемента почти до амплитудного значения входного напряжения, а при отрицательной полуволне – не успевает разрядиться через большое сопротивление резистора . Приведенное описание работы амплитудного детектора соответствует режиму большого входного сигнала, при котором ВАХ полупроводникового диода аппроксимируется ломаной прямой.

В режиме малого входного сигнала начальный участок ВАХ диода может быть аппроксимирован квадратичной зависимостью. При подаче на такой нелинейный элемент амплитудно-модулированного сигнала, спектр которого содержит несущую и боковые частоты, возникают частоты с суммарной и разностной частотами. Разностная частота представляет собой продетектированный сигнал, а несущая и суммарная частоты не проходят через фильтр низких частот, образованный элементами и .

Обычный прием детектирования частотно-модулированных (ЧМ) колебаний состоит в том, что ЧМ колебание сначала преобразуется в АМ колебание, которое затем детектируется вышеописанным способом. В качестве простейшего преобразователя ЧМ в АМ может служить расстроенный относительно несущей частоты колебательный контур. Принцип преобразования ЧМ сигналов в АМ поясняется на рис.7.10.

Рис.7.10. Преобразование ЧМ в АМ

При отсутствии модуляции рабочая точка находится на скате резонансной кривой контура. При изменении частоты изменяется амплитуда тока в контуре, т. е. происходит преобразование ЧМ в АМ.

Схема преобразователя ЧМ в АМ показана на рис.7.11.

Рис.7.11. Преобразователь ЧМ в АМ

Недостатком такого детектора являются искажения продетектированного сигнала, возникающие из-за нелинейности резонансной кривой колебательного контура. Поэтому на практике применяются симметричные схемы, обладающие лучшими характеристиками. Пример такой схемы приведен на рис.7.12.

Рис.7.12. Детектор ЧМ сигналов

Два контура настраиваются на крайние значения частоты, т. е. на частоты И . Каждый из контуров преобразует ЧМ в АМ, как описано выше. АМ колебания детектируются соответствующими амплитудными детекторами. Низкочастотные напряжения и противоположны по знаку, и с выхода схемы снимается их разность. Характеристика детектора, т. е. зависимость выходного напряжения от частоты, получается путем вычитания двух резонансных кривых и более линейна. Такие детекторы называются дискриминаторами (различителями).