Передаточная функция и импульсная характеристика цепи. Переходная функция (переходная характеристика) Переходные характеристики электрических цепей


Пусть произвольная импульсная система задана структурной схемой, представляющей собой совокупность стандартных соединений из простейших импульсных систем (соединений типа обратная связь, последовательных и параллельных). Тогда, чтобы получить передаточную функцию этой системы, достаточно уметь находить передаточную функцию стандартных соединений по передаточным функциям соединяемых импульсных систем, так как последние известны (либо точно, либо приближенно) (см. § 3.1).

Соединения чисто импульсных систем.

Формулы для вычисления -передаточных функций стандартных соединений чисто импульсных систем по z-передаточным функциям соединяемых чисто импульсных элементов совпадают с аналогичными формулами из теории непрерывных систем. Это совпадение происходит потому, что структура формулы (3.9) совпадает со структурой аналогичной формулы из теории непрерывных систем формула (3.9) описывает работу чисто импульсной системы точно.

Пример . Найти z-передаточную функцию чисто импульсной системы, заданной структурной схемой (рис. 3.2).

С учетом (3.9) из структурной схемы, изображенной на рис. 3.2, получаем:

Подставим последнее выражение в первое:

(сравнить с известной формулой из теории непрерывных систем ).

Соединения импульсных систем.

Пример 3.2. Пусть импульсная система представлена структурной схемой (см. рис. .3.3, без учета пунктира и штрихпунктира). Тогда

Если нужно определить дискретные значения выхода (см. фиктивный синхронный ключ на выходе - пунктир на рис. 3.3), то способом, аналогичным тому, который использовался при выводе (3.7), получим, связь:

Рассмотрим другую систему (рис. 3.4, без учета пунктира), которая отличается от предыдущей лишь местом расположения ключа. Для нее

При фиктивном ключе (см. пунктир на рис. 3.4)

Из полученных в этом примере соотношений можно сделать выводы.

Вывод 1. Вид аналитической связи входа как с непрерывными [см. (3.10), (3.12)], так и с дискретными [см. (3.11), (3.13)] значениями выхода произвольной импульсной системы существенно зависит от места расположения ключа.

Вывод 2. Для произвольной импульсной системы, как и для простейшей, которая описана в 3.1, не удается получить характеристику, аналогичную передаточной функции, которая связывает вход и выход во все моменты времени. Не удается получить подобной характеристики, которая связывает вход и выход и в дискретные моменты времени, кратные , что для простейшей импульсной системы сделать удалось (см. § 3.1). Это видно из соотношений соответственно (3.10), (3.12) и (3.11), (3.13).

Вывод 3. Для некоторых частных случаев соединений импульсных систем, например для импульсной системы, структурная схема которой представлена на рис. 3.5 (без пунктира), удается найти передаточную функцию, связывающую вход и выход в дискретные моменты времени, кратные . Действительно, из (3.10) при следует Но тогда [см. вывод формулы (3.7)]

Структура связи z-передаточной функции разомкнутой и замкнутой систем в данном случае такая же, как и в теории непрерывных систем.

Следует отметить, что это хотя и частный случай, но он имеет очень большое практическое значение, так как к нему приводятся многие системы из класса импульсных следящих систем.

Вывод 4. Для получения удобного выражения, аналогичного z-передаточной функции в случае произвольной импульсной системы (см., например, рис. 3.3), требуется вводить синхронные фиктивные ключи не только на выходе системы (см. пунктир на рис. 3.3), но и в других ее точках (см., например, штрихпунктирвый участок вместо сплошного на рис. 3.3). Тогда

и формулы (3.10), (3.11) примут соответственно такой вид:

и, следовательно,

Последствия от введения ключей, изображенных на рис. 3.3 штрихпунктиром и пунктиром, существенно различны, так как последний не меняет характера работы всей системы, он просто дает информацию о ней в дискретные моменты времени.

Первый же, преобразуя в импульсный тот непрерывный сигнал, который поступает на звено обратной связи, превращает исходную систему совсем в другую. Эта новая система достаточно хорошо сможет представлять работу исходной системы, если принять (см. § 5.4) и если

1) выполняются условия теоремы Котельникова (2.20);

2) полоса пропускания звена обратной связи меньше :

где - частота среза звена обратной связи;

3) амплитудная частотная характеристика (АЧХ) звена в районе частоты среза уменьшается достаточно круто (см. рис. 3.6).

Тогда через звено обратной связи проходит только та часть спектра импульсного сигнала , которая соответствует непрерывному сигналу .

Таким образом, формула (3.16) в общем случае только приближенно представляет работу исходной системы даже в дискретные моменты времени. Причем она делает это тем точнее, чем надежнее выполняются условия (2.20), (3.17) и условия крутого спада амплитудно-частотной характеристики для звена, нормальная работа которого нарушена фиктивным ключом.

Итак, с помощью z-преобразования можно точно исследовать работу чисто импульсной системы; с помощью преобразования Лапласа - точно исследовать работу непрерывной системы.

Импульсную систему с помощью одного (любого) из этих преобразований удается исследовать только приближенно, да и то при соблюдении некоторых условий. Причиной тому является наличие в импульсной системе как непрерывных, так и импульсных сигналов (поэтому такие импульсные системы являются непрерывноимпульсными и их иногда называют непрерывно-дискретными). В связи с этим преобразование Лапласа, удобное при оперировании с непрерывными сигналами, становится неудобным, когда дело доходит до дискретных сигналов. Удобное же для дискретных сигналов z-преобразование неудобно для непрерывных.

Так в данном случае проявляется отмеченный еще в апориях }