Импульсная характеристика линейной электрической цепи обладает свойством. Расчет переходной и импульсной характеристик цепи. Учебные и воспитательные цели


Рассмотрим линейную электрическую цепь, не содержащую независимых ис точников тока и напряжения. Пусть внешнее воздействие на цепь представляет со

Переходной характеристикой g (t -t 0 ) линейной цепи, не содержащей незави симых источников энергии, называется отношение реакции этой цепи на воздейст вие неединичного скачка тока или напряжения к высоте этого скачка при нулевых начальных условиях:

реходная характеристика цепи численно равна реакции цепи на воздействие единич­ ного скачка тока или напряжения. Размерность переходной характеристики равна отношению размерности отклика к размерности внешнего воздействия, поэтому переходная характеристика может иметь размерность сопротивления, проводимо сти или быть безразмерной величиной.

Пусть внешнее воздействие на цепь имеет форму бесконечно короткого им пульса бесконечно большой высоты и конечной площади А И :

и .

Реакцию цепи на это воздействие при нулевых начальных условиях обозначим

Импульсной характеристикой h (t -t 0 ) линейной цепи, не содержащей неза висимых источников энергии, называется отношение реакции этой цепи на воздей ствие бесконечно короткого импульса бесконечно большой высоты и конечной площади к площади этого импульса при нулевых начальных условиях:

⁄ и .

Как следует из выражения (6.109), импульсная характеристика цепи численно равна реакции цепи на воздействие единичного импульса (А И = 1). Размерность им пульсной характеристики равна отношению размерности отклика цепи к произве дению размерности внешнего воздействия на время.

Подобно комплексной частотной и операторной характеристикам цепи, пере ходная и импульсная характеристики устанавливают связь между внешним воздей ствием на цепь и ее реакцией, однако в отличие от комплексной частотной и опера торной характеристик аргументом переходной и импульсной характеристик явля ется время t , а не угловая ω или комплексная р частота. Так как характеристики це пи, аргументом которых является время, называются временны́ми, а аргументом которых является частота (в том числе и комплексная) - частотными характери

стиками (см. модуль 1.5), то переходная и импульсная характеристики относятся к временны́м характеристикам цепи.

Каждой паре « внешнее воздействие на цепь - реакция цепи » можно поставить в соответствие определенную комплексную частотную

Для установления связи между этими характеристиками найдем операторные изображения переходной и импульсной характеристик. Используя выражения

(6.108), (6.109), запишем

Операторные изображения реакции цепи на внеш

ние воздействия. Выражая

через операторные изображения внешних

воздействий

Аи

; получаем

0 операторные изображения переходной и импульсной характери

стик имеют особенно простой вид:

Таким образом, импульсная характеристика цепи

Это функция, изо

бражение которой по Лапласу, представляет собой операторную характеристику це

между частотными и временными характеристиками цепи. Зная, например, им пульсную характеристику можно с помощью прямого преобразования Лапла са найти соответствующую операторную характеристику цепи

Используя выражения (6.110) и теорему дифференцирования (6.51), нетрудно установить связь между переходной и импульсной характеристиками:

Следовательно, импульсная характеристика цепи равна первой производной переходной характеристики по времени. В связи с тем, что переходная характери стика цепи g (t-t 0 ) численно равна реакции цепи на воздействие единичного скачка напряжения или тока, приложенного к цепи с нулевыми начальными условиями, значения функции g (t-t 0 ) при t < t 0 равны нулю. Поэтому, строго говоря, переход ную характеристику цепи следует записывать как g (t-t 0 ) ∙ 1(t-t 0 ), а не g (t-t 0 ). За меняя в выражении (6.112) g (t-t 0 ) на g (t-t 0 ) ∙ 1(t-t 0 ) и используя соотношение (6.104), получаем

Выражение (6.113) известно под названием формулы обобщенной производ­ ной . Первое слагаемое в этом выражении представляет собой производную пере ходной характеристики при t > t 0 , а второе слагаемое содержит произведение δ функции на значение переходной характеристики в точке t = t 0 . Если при t = t 0 функ ция g (t-t 0 ) изменяется скачкообразно, то импульсная характеристика цепи содер жит δ функцию, умноженную на высоту скачка переходной характеристики в точке t = t 0 . Если функция g (t-t 0 ) не претерпевает разрыва при t = t 0 , т. е. значение переход ной характеристики в точке t = t 0 равно нулю, то выражение для обобщенной произ водной совпадает с выражением для обычной производной.

Методы определения временных характеристик

Для определения временны́х характеристик линейной цепи в общем случае не обходимо рассмотреть переходные процессы, имеющие место в данной цепи при воздействии на нее единичного скачка (единичного импульса) тока или напряже ния. Это может быть выполнено с помощью классического или операторного метода анализа переходных процессов. На практике для нахождения временных характери стик линейных цепей удобно использовать другой путь, основанный на применении соотношений, устанавливающих связь между частотными и временными характери стиками. Определение временных характеристик в этом случае начинается с состав

операторную характеристику цепи и применяя соотношения (6.110) или (6.111), оп ределяют искомые временные характеристики.

щающего цепи определенную энергию. Токи индуктивностей и напряжения емко стей при этом скачком изменяются на значение, соответствующее поступившей в цепь энергии. На втором этапе (при) действие приложенного к цепи внешне го воздействия закончилось (при этом соответствующие источники энергии вы ключены, т. е. представлены внутренними сопротивлениями), и в цепи возникают свободные процессы, протекающие за счет энергии, запасенной в реактивных эле ментах на первой стадии переходного процесса. Таким образом, импульсная харак теристика цепи, численно равная реакции на воздействие единичного импульса то ка или напряжения, характеризует свободные процессы в рассматриваемой цепи.

Пример6.7.Для цепи, схема которой приведена на рис. 3.12, а, найдем переходную и импульсную характеристики в режиме холостого хода на зажимах 2―2". Внешнее воздейст

вие на цепь ― напряжение на зажимах 1―1"

Реакция цепи ― напряжение на зажи

Операторная характеристика данной цепи, соответствующая заданной паре «внеш нее воздействие на цепь ― реакция цепи», была получена в примере 6.5:

х ⁄ .

Следовательно, операторные изображения переходной и импульсной характери стик цепи имеют вид

⁄ ;

1 ⁄ 1 ⁄ .

Используя таблицы обратного преобразования Лапласа см. приложение 1 , пере ходим от изображений искомых временных характеристик к оригиналам рис. 6.20, а, б:

Отметим, что выражение для импульсной характеристики цепи может быть полу чено и с помощью формулы 6.113 , примененной к выражению для переходной характери стики цепи g t .

Для качественного объяснения вида переходной и импульсной характеристик цепи в данном включении рис. 6.20, а, б подсоединим к зажимам 1-1" независимый источник напряжения рис. 6.20, в. Переходная характеристика данной цепи численно рав на напряжению на зажимах 2-2" при воздействии на цепь единичного скачка напряжения

1 В и нулевых начальных условиях. В начальный момент времени после коммута

ции сопротивление индуктивности бесконечно велико, поэтому при t

на выходе цепи равно напряжению на зажимах 1-1": u 2 |t 0

u 1| t 0

1 В. С течением вре

мени напряжение на индуктивности уменьшается, стремясь к нулю при t

∞ . В соответст

вии с этим переходная характеристика начинается от значения g 0

1 и стремится к нулю

Импульсная характеристика цепи численно равна напряжению на зажимах 2 - 2"

при приложении к входу цепи единичного импульса напряжения e t

Расчет отклика цепи во многих случаях может быть упрощен, если входной сигнал представить суммой элементарных воздействий в виде прямоугольных импульсов малой длительности. Для этого сначала рассмотрим связь между функциями и, изображенными на рис.5.8а,6, которые можно записать в виде:

Вторая функция является единичным импульсом, который рассмотрен нами в п.2.4. Как видно, функция является производной от функции, т.е. . Осуществим в этих функциях предельный переход при. При этом функция перейдет в единичную функцию, а функция в функцию. Тогда в силу равенства следует, что единичный импульс, или - функция является производной единичной функции.

Для линейной цепи отсюда заключаем, что ее отклик на единичный импульс, называемый импульсной характеристикой цепи, является производной переходной характеристики цепи, т.е. или

Размерность импульсной характеристики равна размерности переходной характеристики, деленной на время.

Нахождение импульсной характеристики в большинстве случаев проще, чем нахождение переходной характеристики. Действительно, как показано в п. 2.4, спектральная функция единичного импульса, а поэтому для импульсной характеристики с помощью интеграла Фурье получаем выражение

Из этого выражения следует, что спектральная функция характеристики равна комплексному коэффициенту передачи цепи, т.е. или, пользуясь прямым преобразованием Фурье, запишем:

To есть импульсная характеристика цепи так же, как и переходная характеристика, определяется через коэффициент передачи, но для импульсной характеристики в большинстве случаев подынтегральное выражение в интеграле Фурье оказывается проще.

В качестве примера применим соотношение (5.14) для определения спектра импульсной характеристики интегрирующей цепи, переходная характеристика которой. Для импульсной характеристики получаем

Пользуясь здесь выражением (5.14), необходимо учесть, что переходная характеристика при тождественно равна нулю, и поэтому нижний предел в интеграле выражения (5.14) будет нуль. Тогда спектральная функция импульсной характеристики равна

т.е. получили коэффициент передачи интегрирующей цепи, соответствующий ранее полученному выражению (3.16).

Зная импульсную характеристику, можно найти отклик цепи на воздействие сигнала любой формы, либо предварительно найдя по соотношению (5.12) переходную характеристику, а затем воспользовавшись одним из выражений интеграла Дюамеля, либо непосредственно через функцию. В последнем случае входную функцию, т.е. воздействующий сигнал необходимо представить в виде суммы импульсов, как показано на рис. 5.9.

Такое представление функции будет точнее, если, т.е. если она представлена суммой бесконечно большого числа бесконечно малых по длительности импульсов, являющихся здесь элементарными воздействиями. Если бы элементарным воздействием был единичный импульс, площадь которого равна единице, то откликом цепи на такой импульс, появляющийся в момент времени, была бы импульсная характеристика. В рассматриваемом случае элементарный импульс имеет величину, равную мгновенному значению функции в момент и длительность, равную, т.е. его площадь равна. Тогда откликом на элементарное воздействие будет величина. Отклик цепи на воздействие, заданное функцией, будет суммой откликов на все элементарные воздействия, временное положение которых соответствует интервалу от 0 до, т.е.

Это выражение, являющееся еще одним видом записи интеграла Дюамеля, называется также сверткой функций. Оно по виду совпадает с оригиналом свертки изображений двух функций в формуле (4.21).

Импульсную характеристику цепи можно получить с помощью эксперимента, наблюдая отклик цепи (выходное напряжение) на электронном осциллографе. На вход цепи необходимо подать импульс весьма малой длительности. Для примера рассмотрим импульсную характеристику последовательного колебательного контура, считая, что выходное напряжение снимается с емкости С. Выше в п.1.6 мы рассмотрели переходный процесс при включении постоянного напряжения на такой контур. Если величина поданного напряжения равна единице, то напряжение на емкости, являющееся переходной характеристикой цепи равно, согласно (1.33),

Эта переходная характеристика представлена на рис.5.10а. Тогда импульсная характеристика контура

Считая добротность контура большой, полагаем и тогда первым членом можно пренебречь:

Эта характеристика представлена на рис.5.10б. Она соответствует осциллограмме свободных колебаний в контуре, рассмотренных нами в п.1.5.

Таким образом, для того чтобы экспериментально наблюдать импульсную характеристику контура, необходимо на вход контура подать импульс малой длительности, т.е. (как было пояснено в п.2.4) чтобы его длительность удовлетворяла условию.

Импульсной характеристикой (весовой функцией) называется реакция системы на единичный бесконечный импульс (дельта-функцию или функцию Дирака) при нулевых начальных условиях. Дельта-функция определяется равенствами

, .

Это обобщенная функция – математический объект, представляющий собой идеальный сигнал, никакое реальное устройство не способно его воспроизвести. Дельта-функцию можно рассматривать как предел прямоугольного импульса единичной площади с центром в точке при стремлении ширины импульса к нулю.

Теперь нам нужно проанализировать пределы этой суммы. Итак, мы должны использовать интегралы для правильного понимания этого типа системы. Для этого нам нужна свертка! Предположим для этой задачи, что \\ больше нуля. Попробуйте выполнить следующие две функции.

,

где – передаточная функция системы, которая является преобразованием Лапласа для. Импульсная характеристика системы с одним интегратором стремится к постоянной величине, равной статическому коэффициенту передачи системы без интегратора. Для системы с двумя интеграторами импульсная характеристика асимптотически стремится к прямой, с тремя интеграторами – к параболе и т.д.

Соответствующим дискретным сигналом является последовательность. Рассмотрим преобразование Фурье непрерывного сигнала. Аппроксимация преобразования Фурье получается из дискретного сигнала методом прямоугольников.

Когда сумма остановлена ​​в конечном ранге, мы находим.

Линейная система с конечной импульсной характеристикой


Эта система называется причинной, поскольку состояние выхода зависит только от предыдущих состояний входа. Дискретный сигнал, определяемый.

Для входного импульса линейная система выводит сигнал.

Следует отметить, что выходной сигнал является результатом свертки входного сигнала импульсной характеристикой.

8. Временной метод анализа переходных процессов в линейных электрических цепях

8.1. Переходные и импульсные характеристики электрических цепей

В основе временного метода лежит понятие переходной и импульсной характеристик цепи. Переходной характеристикой цепи называют реакцию цепи на воздействие в форме единичной функции (7.19). Обозначается переходная характеристика цепи g (t ). Импульсной характеристикой цепи называют реакцию цепи на воздействие единичной импульсной функции (d-функции) (7.21). Обозначается импульсная характеристика h (t ). Причем, g (t ) и h (t ) определяются при нулевых начальных условиях в цепи. В зависимости от типа реакции и типа воздействия (ток или напряжение) переходные и импульсные характеристики могут быть безразмерными величинами, либо имеют размерность А/В или В/А.

Эта система представляет собой фильтр с конечным импульсным откликом.


Который является дискретным преобразованием Фурье импульсной характеристики. Рассмотрим в качестве простого примера фильтр, реализующий среднее арифметическое двух последовательных значений ввода.

Использование понятий переходной и импульсной характеристик цепи позволяет свести расчет реакции цепи от действия непериодического сигнала произвольной формы к определению реакции цепи на простейшее воздействие типа единичной 1(t ) или импульсной функции d(t ), с помощью которых аппроксимируется исходный сигнал. При этом результирующая реакция линейной цепи находится (с использованием принципа наложения) как сумма реакций цепи на элементарные воздействия 1(t ) или d(t ).


Средний фильтр - фильтр нижних частот. Фазовый сдвиг линейно изменяется с частотой. Это подтверждается следующим выражением частотной характеристики . Чтобы имитировать действие этого фильтра на сигнал, рассмотрите следующий непрерывный сигнал и его выборку.

Чтобы получить отфильтрованный дискретный сигнал, достаточно выполнить свертку с импульсной характеристикой. Для линейного фазового фильтра фазовый сдвиг является линейной функцией частоты. Таким образом, частотная характеристика имеет следующий вид.

Все частоты сигнала подвергаются одному и тому же сдвигу τ при прохождении через фильтр. τ - время распространения.

Между переходной g (t ) и импульсной h (t ) характеристиками линейной пассивной цепи существует определенная связь. Ее можно установить, если представить единичную импульсную функцию через предельный переход разности двух единичных функций величины 1/t, сдвинутых друг относительно друга на время t (см. рис. 7.4):

т. е. единичная импульсная функция равна производной единичной функции. Так как рассматриваемая цепь предполагается линейной, то соотношение (8.1) сохраняется и для импульсных и переходных реакций цепи

Форма сигнала не изменяется с помощью полосовой фильтрации. Выделяя термин, содержащий фазу, частотная характеристика записывается в соответствии с выражением. После изменения переменной в сумме выводится выражение коэффициента усиления. Написан частотный отклик. Учитывая предел, получим.


Получен линейный фазовый фильтр с бесконечной импульсной характеристикой. Этот метод эквивалентен применению прямоугольного окна к коэффициентам Фурье.

Коэффициенты Фурье этой функции.

Результат может быть выражен с помощью синусовой кардинальной функции и зависит только от отношения частоты среза к частоте дискретизации.

т. е. импульсная характеристика является производной от переходной характеристики цепи.

Уравнение (8.2) справедливо для случая, когда g (0) = 0 (нулевые начальны е условия для цепи). Еслиже g (0) ¹ 0, то представив g (t ) в виде g (t ) = , где = 0, получим уравнение связи для этого случая:

Для получения частотной характеристики используется следующая функция. Здесь приведен график усиления и фазы фильтра. Можно видеть, что фаза действительно линейна в полосе пропускания, но усиление имеет очень сильные волнистости. В аттенюированной полосе имеются разрывы π фазы. Разумеется, различия в отношении желаемой передаточной функции обусловлены усечением импульсной характеристики.

Попробуем усечение окном Ханна. Волны в полосе пропускания и в аттенюированной полосе значительно уменьшены. Линейность фазы в полосе пропускания всегда обеспечивается. Если задержка τ должна оставаться фиксированной, частота дискретизации должна быть увеличена одновременно. Отбирается сигнал с шумом.

Для нахождения переходных и импульсных характеристик цепи можно использовать как классический, так и операторный методы. Сущность классического метода состоит в определении временной реакции цепи (в форме напряжения или тока в отдельных ветвях цепи) на воздействие единичной 1(t ) или импульсной d(t ) функции. Обычно классическим методом удобно определять переходную характеристику g (t ), а импульсную характеристику h (t ) находить с помощью уравнений связи (8.2), (8.3) или операторным методом .

Пример. Найдем классическим методом переходную характеристику по напряжению для цепи, изображенной на рис. 8.1. Численно g u (t ) для данной цепи совпадает с напряжением на емкости при подключении ее в момент t = 0 к источнику напряжения U 1 = l В:

Закон изменения напряжения u C (t ) определяется уравнением (6.27), где необходимо положить U = l В:

При нахождении характеристик g (t ) и h (t ) операторным методом пользуются изображениями функций 1(t ), d(t ) и методикой расчета переходных процессов, изложенных в гл. 7.

Пример. Определим операторным методом переходную характеристику g u (t ) -цепи (см. рис. 8.1). Для данной цепи в соответствии с законом Ома в операторной форме (7.35) можем записать:

Окончательно получаем

Отсюда по теореме разложения (7.31) находим

т. е. то же значение, что и полученное классическим методом.

Следует отметить, что величина I (р ) в уравнении (8.4) численно равна изображению переходной проводимости. Аналогичное изображение импульсной характеристики численно равно операторной проводимости цепи

Например, для -цепи (см. рис. 8.1) имеем:

Применив к Y (p ) теорему разложения (7.30), получим:

Следует отметить, что формула (8.5) определяет свободную составляющую реакции цепи при единичном импульсном воздействии. В общем случае в реакции цепи, кроме экспоненциальных составляющих свободного режима при t > 0 присутствует импульсное слагаемое, отображающее воздействие при t = 0 единичного импульса. Действительно, если учесть, что для -контура (см. рис. 8.1) переходная характеристика по току при U = 1(t ) согласно (6.28) будет

то после дифференцирования (8.6) согласно (8.2) получаем импульсную характеристику -цепи h i (t ) в виде

т. е. реакция h i (t ) содержит два слагаемых - импульсное и экспоненциальное.

Физический смысл первого слагаемого в (8.7) означает, что при t = 0 в результате воздействия на цепь импульсного напряжения d(t ) зарядный ток мгновенно достигает бесконечно большого значения, при этом за время от 0 – до 0 + элементу емкости передается конечный заряд и она скачком заряжается до напряжения I /RC . Второе слагаемое определяет свободный процесс в цепи при t > 0 и обусловлено разрядом конденсатора через короткозамкнутый вход (так как при t > 0 d(t ) = 0, что равносильно КЗ входа) с постоянной времени t = RC . Из этого следует, что при d(t )-импульсном воздействии на -цепь нарушается непрерывность заряда на емкости (второй закон коммутации). Аналогично нарушается и условие непрерывности тока в индуктивности (первый закон коммутации), если к цепи, содержащей элемент индуктивности воздействовать напряжением в виде d(t ).

В табл. 8.1 сведены значения переходной и импульсных характеристик по току и напряжению для некоторых цепей первого и второго порядка.

8.2. Интеграл Дюамеля

Интеграл Дюамеля может быть получен, если аппроксимировать приложенное воздействие f 1 (t ) с помощью единичных функций, сдвинутых относительно друг друга на время Dt (рис. 8.2).

Реакция цепи на каждое ступенчатое воздействие определится как

Результирующая реакция цепи на систему ступенчатых воздействий найдется, исходя из принципа наложения:


где п - число аппроксимирующих участков, на которые разбит интервал 0 ... t . Домножив и разделив выражение, стоящее под знаком суммы, на Dt и перейдя к пределу с учетом того получим одну из форм интеграла Дюамеля:


Уравнение (8.8) отражает реакцию цепи на заданное воздействие, поскольку аппроксимирующая функция стремится к исходной.

Вторая форма интеграла Дюамеля может быть получена с помощью теоремы свертки (см.): , б), затем определяется классическим или операторным методом реакция цепи при включении рассматриваемой ветви к активному двухполюснику (рис. 8.4, в ). Результирующая реакция находится как сумма реакций: .

8.3. Интеграл наложения

При нахождении реакции цепи с помощью интеграла наложения используется импульсная характеристика цепи h (t ). Для получения общего выражения интеграла наложения аппроксимируем входной сигнал f 1 (t ) с помощью системы единичных импульсов длительности d t, амплитуды f 1 (t) и площади f 1 (t)d t (рис. 8.5). Выходная реакция цепи на каждый из единичных импульсов

Используя принцип наложения, нетрудно получить суммарную реакцию цепи на систему единичных импульсов:

Интеграл (8.12) носит название интеграла наложения . Между интегралами наложения и Дюамеля существует простая связь, определяемая связью (8.3) между импульсной h (t ) и переходной g (t ) характеристиками цепи. Подставив, например, значение h (t ) из (8.3) в формулу (8.12) с учетом фильтрующего свойства d-функции (7.23), получим интеграл Дюамеля в форме (8.11).

Пример. На вход -цепи (см. рис. 8.1) подается скачок напряжения U 1 . Определить реакцию цепи на выходе с использованием интегралов наложения (8.12) и Дюамеля (8.11).

Импульсная характеристика данной цепи равна (см. табл. 8.1): h u (t ) = = (1/RC)e –t / RC . Тогда, подставляя h u (t – t) = (1/RC)e –( t– t)/ RC в формулу (8.12), получаем:

Аналогично результат получаем при использовании переходной функции данной цепи и интеграла Дюамеля (8.11):

Если начало воздействия не совпадает с началом отсчета времени, то интеграл (8.12) принимает вид

Интегралы наложения (8.12) и (8.13) представляютсобойсвертку входного сигнала с импульсной характеристикой цепи и широко применяются в теории электрических цепей и теории передачи сигналов. Ее физический смысл заключается в том, что вход ной сигнал f 1 (t) как бы взвешивается с помощью функции h (t- t): чем медленнее убывает со временем h (t ), тем большее влияние на выходной сигнал оказывает более удаленные от момента наблюдения значение входного воздействия.


На рис. 8.6, а показан сигнал f 1 (t) и импульсная характеристика h (t- t), являющаяся зеркальным отображением h (t), а на рис. 8.6, б приведена свертка сигнала f 1 (t) с функцией h (t- t) (заштрихованная часть), численно равная реакции цепи в момент t .

Из рис. 8.6 видно, что отклик на выходе цепи не может быть короче суммарной длительности сигнала t 1 и импульсной характеристики t h . Таким образом, для того чтобы выходной сигнал не искажался импульсная характеристика цепи должна стремиться к d-функции.

Очевидно также, что в физически реализуемой цепи реакция не может возникнуть раньше воздействия. А это означает, что импульсная характеристика физически реализуемой цепи должна удовлетворять условию

Для физически реализуемой устойчивой цепи кроме того должно выполняться условие абсолютной интегрируемости импульсной характеристики:

Если входное воздействие имеет сложную форму или задается графически, то для вычисления реакции цепи вместо интеграла свертки (8.12) применяют графоаналитические способы.

Вопросы и задания для самопроверки

1. Дать определения переходной и импульсной характеристик цепи.

2. Указать связь между импульсной и переходной характеристиками.

3. Как определить переходную и импульсную характеристику цепи?

4. В чем отличие переходных характеристик, объяснить их физический смысл.

5. Как определить, какую из четырех разновидностей переходных или импульсных характеристик необходимо применить в каждом конкретном случае при расчете реакции цепи?

6. В чем заключается сущность расчета переходных процессов с использованием g (t ) и h (t )?

7. Как определить реакцию цепи, если воздействие имеет сложную форму?

8. Каким условиям должна удовлетворять цепь при использовании интеграла Дюамеля?

9. Приведите другую форму интеграла наложения, отличную от (8.12).

10. Расчет реакции цепи с использованием интегралов Дюамеля и наложения приводит к одинаковым результатам или разным?

11. Определить переходную проводимость цепи, образованной сопротивлением и индуктивностью, включенными последовательно.

12. Определить цепи, образованной сопротивлением и емкостью, включенными последовательно.

Ответ: .

13. Получить третью форму интеграла Дюамеля (8.10) из уравнения свертки (8.10).

Министерство образования и науки Украины

Донецкий Национальный Университет

Доклад

на тему: Радиотехнические цепи и сигналы

Студента 3 курса дневного отделения НФ-3

Разработал студент:

Александрович С. В.

Проверил преподаватель:

Долбещенков В. В.

ВВЕДЕНИЕ

"Радиотехнические цепи и сигналы" (РТЦ и С) – курс, являющийся продолжением курса "Основы теории цепей". Его целью является изучение фундаментальных закономерностей, связанных с получением сигналов, их передачей по каналам связи, обработкой и преобразованием в радиотехнических цепях. Излагаемые в курсе "РТЦ и С" методы анализа сигналов и радиотехнических цепей используют математические и физические сведения, в основном известные студентам из предшествующих дисциплин. Важная задача курса "РТЦ и С" – научить студентов выбирать математический аппарат, адекватный встретившейся проблеме, показать, как работает этот аппарат при решении конкретных задач в области радиотехники. Не менее важно научить студентов видеть тесную связь математического описания с физической стороной рассматриваемого явления, уметь составлять математические модели изучаемых процессов.

Основные разделы, изучаемые в курсе "Радиотехнические цепи и сигналы":

1. Временной анализ цепей на основе свертки;

2. Спектральный анализ сигналов;

3. Радиосигналы с амплитудной, угловой модуляцией;

4. Корреляционный анализ сигналов;

5. Активные линейные цепи;

6. Анализ прохождения сигналов через узкополосные цепи;

7. Отрицательная обратная связь в линейных цепях;

8. Синтез фильтров;

9. Нелинейные цепи и методы их анализа;

10. Цепи с переменными параметрами;

11. Принципы генерирования гармонических колебаний;

12. Принципы обработки сигналов дискретного времени;

13. Случайные сигналы;

14. Анализ прохождения случайных сигналов через линейные цепи;

15. Анализ прохождения случайных сигналов через нелинейные цепи;

16. Оптимальная фильтрация детерминированных сигналов в шумах;

17. Оптимальная фильтрация случайных сигналов;

18. Численные методы расчета линейных цепей.

ВРЕМЕННОЙ АНАЛИЗ ЦЕПЕЙ НА ОСНОВЕ СВЕРТКИ

Переходная и импульсная характеристика

В основе временного метода лежит понятие переходной и им­пульсной характеристик цепи. Переходной характеристикой цепи называют реакцию цепи на воздействие в форме единичной функции. Обозначается переходная характеристика цепи g (t ). Импульсной характеристикой цепи называют реакцию цепи на воз­действие единичной импульсной функции (d-функции). Обо­значается импульсная характеристика h (t ). Причем, g (t ) и h (t )определяются при нулевых начальных условиях в цепи. В зави­симости от типа реакции и типа воздействия (ток или напряжение) переходные и импульсные характеристики могут быть безразмер­ными величинами, либо имеют размерность А/В или В/А.


Использование понятий переходной и импульсной характери­стик цепи позволяет свести расчет реакции цепи от действия непе­риодического сигнала произвольной формы к определению реакции цепи на простейшее воздействие типа единичной 1(t ) или импульс­ной функции d(t ), с помощью которых аппроксимируется исходный сигнал. При этом результирующая реакция линейной цепи нахо­дится (с использованием принципа наложения) как сумма реакций цепи на элементарные воздействия 1(t ) или d(t ).

Между переходной g (t ) и импульсной h (t ) характеристиками линейной пассивной цепи существует определенная связь. Ее можно установить, если представить единичную импульсную функцию через предельный переход разности двух единичных функций вели­чины 1/t, сдвинутых друг относительно друга на время t:

т. е. единичная импульсная функция рав­на производной единичной функции. Так как рассматриваемая цепь предполагается линейной, то соотношение сохраня­ется и для импульсных и переходных реак­ций цепи

т. е. импульсная характеристика является производной от переход­ной характеристики цепи.

Уравнение справедливо для случая, когда g (0) = 0 (нуле­вые начальные условия для цепи). Если же g (0) ¹ 0, то предста­вив g (t ) в виде g (t ) = , где = 0, получим уравнение связи для этого случая:

Для нахождения переходных и им­пуль­сных характеристик цепи можно использо­вать как классический, так и операторный методы. Сущность классического метода сос­то­ит в определении временной реакции цепи (в форме напряжения или тока в отдельных ветвях цепи) на воздействие единичной 1(t ) или импульсной d(t ) функ­ции. Обычно классическим методом удобно определять переходную характеристику g (t ), а импульсную характеристику h (t ) находить с помощью уравнений связи или операторным мето­дом.

Следует отметить, что величина I (р ) в уравнении численно равна изображению переходной проводимости. Аналогичное изо­бражение импульсной характеристики численно равно операторной проводимости цепи

Например, для -цепи имеем:

Применив к Y (p ) теорему разложения, получим:

В табл. 1.1 сведены значения переходной и импульсных харак­теристик по току и напряжению для некоторых цепей первого и второго порядка.

Импульс является функцией без какой-либо поддержки времени. С дифференциальными уравнениями используется для получения естественного отклика системы. Естественным ее ответом является реакция на начальное состояние. Форсированный отклик системы - это ответ на вход, пренебрегая ее первичным формированием.

Поскольку импульсная функция не имеет какой-либо поддержки времени, можно описать любое начальное состояние, возникающее из соответствующей взвешенной величины, которая равна массе тела, произведенной на скорость. Любая произвольная входная переменная может быть описана как сумма взвешенных импульсов. В результате, для линейной системы описывается как сумма «естественных» ответов на состояния, представленные рассматриваемыми величинами. Это то, что объясняет интеграл.

Когда вычисляется импульсная характеристика системы, по существу, производится естественный отклик. Если исследуется сумма или интеграл свертки, в основном решается этот вход в ряд состояний, а затем изначально сформированный ответ на эти состояния. Практически для импульсной функции можно привести пример удара в боксе, который длится очень мало, и после этого не будет следующего. Математически он присутствует только в начальной точке реалистической системы, имеющей высокую (бесконечную) амплитуду в этом пункте, а затем постоянно гаснет.

Импульсная функция определяется следующим образом: F(X)=∞∞ x=0=00, где ответ представляет собой характеристику системы. Рассматриваемая функция на самом деле является областью прямоугольного импульса при x=0, ширина которого считается равной нулю. При x=0 высоты h и его ширины 1/h это фактическое начало. Теперь, если ширина становится незначительной, то есть почти стремится к нулю, это делает соответствующую высоту h величины, стремящейся к бесконечности. Это определяет функцию как бесконечно высокую.

Ответ конструкции

Импульсная характеристика следующая: всякий раз, когда системе (блоку) или процессору присваивается входной сигнал, он изменяет или обрабатывает его, чтобы дать желаемое выходное предупреждение в зависимости от функции передачи. Отклик системы помогает определить основные положения, конструкцию и реакцию для любого звука. Дельта-функция является обобщенной, которая может быть определена как предел класса указанных последовательностей. Если принимать импульсного сигнала, то разумеется, что оно является спектром постоянного тока в частотной области. Это означает, что все гармоники (в диапазоне от частоты до +бесконечности) способствуют рассматриваемому сигналу. Спектр частотной характеристики указывает, что эта система обеспечивает такой порядок усиления или ослабления этой частоты или подавляет эти колеблющиеся составляющие. Фазовый говорит о сдвиге, предоставляемом для разных гармоник частоты.

Таким образом, импульсные характеристики сигнала указывают на то, что он содержит в себе весь диапазон частот, поэтому используется для тестирования системы. Потому что, если применять какой-либо другой метод оповещения, то у него не будет всех необходимых сконструированных деталей, следовательно, реакция останется неизвестной.

Реакция устройств на внешние факторы

При обработке оповещения импульсная характеристика представляет собой ее выход, когда он представлен кратким входным сигналом, называемым импульсом. В более общем плане является реакцией любой динамической системы в ответ на некоторые внешние изменения. В обоих случаях импульсная характеристика описывает функцию времени (или, возможно, как некоторой другой независимой переменной, которая параметризирует динамическое поведение). Она имеет бесконечную амплитуду только при t=0 и нулевую всюду, и, как следует из названия, ее импульс i, e действует в течение короткого промежутка.

При применении любая система имеет функцию передачи от входа к выходу, которая описывает ее как фильтр, влияющий на фазу и указанную выше величину в частотном диапазоне. Эта частотная характеристика с использованием импульсных методов, измеренная или рассчитанная в цифровом виде. Во всех случаях динамическая система и ее характеристика могут быть реальными физическими объектами или математическими уравнениями, описывающими такие элементы.

Математическое описание импульсов

Поскольку рассматриваемая функция содержит все частоты, критерии и описание определяют отклик линейной временной инвариантной конструкции для всех величин. Математически как описывается импульс, зависит от того, смоделирована ли система дискретным или непрерывным временем. Его можно моделировать как дельта-функцию Дирака для систем непрерывного времени или как величину Кронекера для конструкции с прерывным действием. Первая представляет собой предельный случай импульса, который был очень коротким по времени, сохраняя свою площадь или интеграл (тем самым давая бесконечно высокий пик). Хотя это невозможно в любой реальной системе, это полезная идеализация. В теории анализа Фурье такой импульс содержит равные части всех возможных частот возбуждения, что делает его удобным тестовым зондом.

Любая система в большом классе, известная как линейная, инвариантная по времени (LTI), полностью описывается импульсной характеристикой. То есть для любого входа выход можно рассчитать в терминах ввода и непосредственной концепции рассматриваемой величины. Импульсное описание линейного преобразования представляет собой образ дельта-функции Дирака при преобразовании, аналогичный фундаментальному решению дифференциального оператора с частными производными.

Особенности импульсных конструкций

Обычно проще анализировать системы, используя передаточные импульсные характеристики, а не ответы. Рассматриваемая величина представляет собой преобразование Лапласа. Усовершенствование ученым выходного сигнала системы может быть определено умножением передаточной функции на это действие ввода в комплексной плоскости, также известной как частотная область. Обратное преобразование Лапласа этого результата даст выход во временной области.

Для определения выхода непосредственно во временной области требуется свертка входа с импульсной характеристикой. Когда передаточная функция и преобразование Лапласа ввода известны. Математическая операция, применяющаяся на двух элементах и реализующая третий, может быть более сложной. Некоторые предпочитают альтернативу - умножение двух функций в частотной области.

Реальное применение импульсной характеристики

В практических системах невозможно создать идеальный импульс для ввода данных для тестирования. Поэтому короткий сигнал иногда используется в качестве приближения величины. При условии, что импульс достаточно короткий, по сравнению с откликом, результат будет близок к истинному, теоретическому. Однако во многих системах вхождение с очень коротким сильным импульсом может привести конструкцию в нелинейный режим. Поэтому вместо этого она управляется псевдослучайной последовательностью. Таким образом, импульсная переходная характеристика рассчитывается из входных и выходных сигналов. Отклик, рассматриваемый как функция Грина, можно рассматривать как «влияние» - как точка входа влияет на выход.

Характеристики импульсных устройств

Колонки являются приложением, которое демонстрирует саму идею (была разработка тестирования импульсного отклика в 1970-х годах). Громкоговорители страдают от неточности фазы, дефекта, в отличие от других измеренных свойств, таких как частотная характеристика. Этот недоработанный критерий вызван (слегка) задержанными колебаниями/октавами, которые в основном являются результатом пассивных кросс-передач (особенно фильтров более высокого порядка). Но также вызваны резонансом, внутренним объемом или вибрированием панелей корпуса. Отклик - конечная импульсная характеристика. Его измерение обеспечило инструмент для использования в уменьшении резонансов за счет применения улучшенных материалов для конусов и корпусов, а также изменения кроссовера динамиков. Необходимость ограничить амплитуду для поддержания линейности системы привела к использованию входов, таких как псевдослучайные последовательности максимальной длины, и к помощи компьютерной обработки для получения остальных сведений и данных.

Электронное изменение

Анализ импульсного отклика является основным аспектом радиолокации, ультразвуковой визуализации и многих областей цифровой обработки сигналов. Интересным примером могут быть широкополосные интернет-соединения. DSL-услуги используют методы адаптивного выравнивания, чтобы помочь компенсировать искажения и помехи сигнала, введенные медными телефонными линиями, используемыми для доставки услуги. В их основе лежат устаревшие цепи, импульсная характеристика которых оставляет желать лучшего. На смену пришли модернизированные покрытия для использования Интернета, телевидения и других устройств. Эти усовершенствованные конструкции способны улучшать качество, особенно с учетом того, что современный мир - это сплошное интернет-соединение.

Системы контроля

В теории управления импульсная характеристика представляет собой отклик системы на вход дельта Дирака. Это полезно при анализе динамических конструкций. Преобразование Лапласа дельта-функции равно единице. Поэтому импульсная характеристика эквивалентна обратному преобразованию Лапласа передаточной функции системы и фильтру.

Акустические и звуковые приложения

Здесь импульсные ответы позволяют записывать звуковые характеристики местоположения, например, концертного зала. Доступны различные пакеты, содержащие оповещения от конкретных мест, от небольших комнат до крупных концертных залов. Эти импульсные отклики могут затем использоваться в приложениях реверберации свертки, чтобы позволить акустическим характеристикам конкретного местоположения применяться к целевому звуку. То есть по факту происходит анализ, разделение различных оповещений и акустики через фильтр. Импульсная характеристика в данном случае способна дать возможность выбора пользователю.

Финансовая составляющая

В современном макроэкономическом моделировании функции импульсного ответа используются для описания того, как она реагирует со временем на экзогенные величины, которые научные исследователи обычно называют потрясениями. И часто имитируются в контексте векторной авторегрессии. Импульсы, которые часто считаются экзогенными, с макроэкономической точки зрения включают изменения в государственных расходах, ставках налогов и других параметрах финансовой политики, изменения денежной базы или других параметров капитала и кредитной политики, перемены производительности или других технологических параметров; преобразование в предпочтениях, такие как степень нетерпения. Функции импульсного отклика описывают реакцию эндогенных макроэкономических переменных, таких как выход, потребление, инвестиции и занятость во время шока и в последующие моменты времени.

Конкретнее об импульсе

По существу дела, ток и импульсная характеристика взаимосвязаны. Потому что каждый сигнал может быть смоделирован как серия. Это происходит ввиду наличия определенных переменных и электричества или генератора. Если система является как линейной, так и временной, реакция прибора на каждый из откликов может быть вычислена с использованием рефлексов рассматриваемой величины.