Математическое описание модели линейного программирования. Формы линейных математических моделей и их преобразование Общий вид модели линейного программирования


ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ФГОУ ПО “ПСКОВСКИЙ КОЛЛЕДЖ СТРОИТЕЛЬСТВА И ЭКОНОМИКИ”

Предмет “Математические методы”

Задача линейного программирования

Курсовая работа

Студента группы 315-ПО

Андреева Дмитрия Александровича

Руководитель курсовой работы

Васильева Наталья Анатольевна

Псков 2009 г.

Введение

Глава Ι Линейное программирование

§ 1 Общая постановка задачи линейного программирования

§ 2 Математическая модель задачи линейного программирования

§ 3 Каноническая форма задачи линейного программирования

Глава ΙΙ Решение задачи симплексным методом

§ 1 Постановка задачи

§ 2 Составление математической модели задачи

§ 3 Алгоритмы решения задачи симплексным методом

§ 4 Построение начального опорного решения методом Гаусса

§ 5 Решение задачи

Заключение

Литература

Введение

В настоящее время множество задач планирования и управления в отраслях народного хозяйства, а также большой объём частных прикладных задач решаются методами математического программирования. Наиболее развитыми в области решения оптимизационных задач являются методы линейного программирования. Эти методы позволяют описать с достаточной точностью широкого круга задач коммерческой деятельности, таких, как планирование товарооборота; размещение розничной торговой сети города; планирование товароснабжения города, района; прикрепление торговых предприятий к поставщикам; организация рациональных перевозок товаров; распределение работников торговли должностям; организация рациональных закупок продуктов питания; распределение ресурсов; планирование капиталовложений; оптимизация межотраслевых связей; замена торгового оборудования; определение оптимального ассортимента товаров в условиях ограниченной площади; установление рационального режима работы.

В задачах линейного программирования критерий эффективности и функции в системе ограничений линейны.

Если в задаче математического программирования имеется переменная времени, а критерий эффективности выражается через уравнения, описывающие течение операций во времени, то такая задача является задачей динамического программирования.

Во многих экономических моделях зависимости между постоянными и переменными факторами можно считать линейными.

Использование методов математического программирования в коммерческой деятельности связано со сбором необходимой информации коммерсантом, экономистом, финансистом, затем постановкой задачи вместе с математикой. Поскольку методы математического программирования уже реализованы на компьютере в виде пакета стандартных программ, то доступ к ним обычно прост, автоматизирован и не составляет особых трудностей.

Тогда эксплуатация модели включает в себя сбор и обработку информации, ввод обработанной информации в ЭВМ, расчеты на основе разработанных программ календарных планов и, наконец, выдачу результатов вычислений (в удобном для пользователей виде) для их использования в сфере производственной деятельности.

Глава Ι Линейное программирование

§ 1 Общая постановка задачи линейного программирования

Линейное программирование – это направление математического программирование изучающая методы решения экстремальных задач, которые характеризуются линейной зависимостью между переменными и линейной целевой функцией. Для решения задач линейного программирования составляется математическая модель задачи и выбирается метод решения.

Постановка задачи коммерческой деятельности может быть представлена в виде математической модели линейного программирования, если целевая функция может быть представлена в виде линейной формы, а связь с ограниченными ресурсами описать посредством линейных уравнений или неравенств. Кроме того, вводится дополнительное ограничение – значения переменных должны быть неотрицательны, поскольку они представляют такие величины, как товарооборот, время работы, затраты и другие экономические показатели.

Геометрическая интерпретация экономических задач даёт возможность наглядно представить, их структуру, выявить особенности и открывает пути исследования более сложных свойств. Задача линейного программирования с двумя переменными всегда можно решить графически. Однако уже в трёхмерном пространстве такое решение усложняется, а в пространствах, размерность которых более трёх, графическое решение, вообще говоря, невозможно. Случай двух переменных не имеет особого практического значения, однако его рассмотрение проясняет свойства задач линейного программирования, приводит к идее её решения, делает геометрически наглядными способы решения и пути их практической реализации.

§ 2 Математическая модель задачи линейного программирования

Перед решением задачи составляем её математическую модель.

Математическая модель – это совокупность соотношений состоящие из линейной целевой функции и линейных ограничений на переменную.

Принцип составления математической модели.

1. Выбирают переменные задачи.

Переменными задачи называются величины

Которые полностью характеризуют экономический процесс, описанный в задачи. Обычно записываются в виде вектора X = () Причём )

2. Составляют систему ограничения задачи.

Система ограничений – это совокупность уравнений и неравенств, которым удовлетворяют переменные задачи и которая следует из ограниченности экономических условий задачи.

В общем виде система записывается в виде

3. Задают целевую функцию.

Целевая функция – это функция Z(X) которая характеризует качество выполнения задачи, экстремум которой надо найти. В общем виде целевая функция записывается Z(X) =

т.о. математическая модель имеет вид найти переменные задачи

удовлетворяющие системе ограничений:

и условию неотрицательности

0 (j = ), которая обеспечивает экстремум целевой функции Z(Y) =

Допустимым решением задачи линейного программирования называется любой набор значений переменных удовлетворяющий системе ограничений и условной неотрицательности.

Множество допустимых решений образует область допустимых решений задачи (ОДР).

Оптимальным решением называется допустимое решение задачи, при котором целевая функция достигает экстремума.

§ 3 Каноническая форма задачи линейного программирования

Математическая модель задачи должна иметь каноническую форму.

Если система ограничения состоит только из уравнения и все переменные удовлетворяют условию неотрицательности, то задача имеет каноническую форму.

Если в системе есть хотя бы одно неравенства или какая–либо переменная неограниченна условию неотрицательности, то задача имеет стандартную форму. Чтобы привести задачу к каноническому виду надо:

перейти от неравенств к уравнению следующим образом: в левую часть неравенств вводим дополнительную переменную с коэффициентом (+1) для неравенства (

) и (-1) для неравенства () дополнительные переменные не наложены целевые неотрицательности, то её заменяют разностью двух неотрицательных переменных, то есть: = – (

Общий вид канонической формы:

Глава ΙΙ Решение задачи симплексным методом

Симплексный метод – это метод последовательного улучшения плана (решения), наиболее эффективный и применяется для решения любой задачи линейного программирования.

Название метода от латинского simplecx – простой т.к. из начального область допустимых решений задачи имела простейший вид. Идеи метода предложил российский математик Контарович Л.В. в 1939 году и затем эту идею развил и разработал Дж. Данциг в 1949 году.

Симплексный метод позволяет за конечное число шагов либо найти оптимальное решение либо доказать что его нет.

§ 1 Постановка задачи

На предприятии в процессе производства используется 3 вида станков Ι, ІΙ, ІΙІ. При этом расходуется сырьё, трудовые ресурсы, и учитываются накладные расходы.

Любую задачу линейного программирования можно свести к задаче линейного программирования в канонической форме. Для этого в общем случае нужно уметь сводить задачу максимизации к задаче минимизации; переходить от ограничений неравенств к ограничениям равенств и заменять переменные, которые не подчиняются условию неотрицательности. Максимизация некоторой функции эквивалента минимизации той же функции, взятой с противоположным знаком, и наоборот.

Правило приведения задачи линейного программирования к каноническому виду состоит в следующем:

  • если в исходной задаче требуется определить максимум линейной функции, то следует изменить знак и искать минимум этой функции;
  • если в ограничениях правая часть отрицательна, то следует умножить это ограничение на -1;
  • если среди ограничений имеются неравенства, то путем введения дополнительных неотрицательных переменных они преобразуются в равенства;
  • если некоторая переменная x j не имеет ограничений по знаку, то она заменяется (в целевой функции и во всех ограничениях) разностью между двумя новыми неотрицательными переменными:
    x 3 = x 3 + — x 3 — , где x 3 + , x 3 — ≥ 0 .

Пример 1 . Приведение к канонической форме задачи линейного программирования:

min L = 2x 1 + x 2 — x 3 ;
2x 2 — x 3 ≤ 5;
x 1 + x 2 — x 3 ≥ -1;
2x 1 — x 2 ≤ -3;
x 1 ≤ 0; x 2 ≥ 0; x 3 ≥ 0.

Введем в каждое уравнение системы ограничений выравнивающие переменные x 4 , x 5 , x 6 . Система запишется в виде равенств, причем в первое и третье уравнения системы ограничений переменные x 4 , x 6 вводятся в левую часть со знаком "+", а во второе уравнение переменная x 5 вводится со знаком "-".

2x 2 — x 3 + x 4 = 5;
x 1 + x 2 — x 3 — x 5 = -1;
2x 1 — x 2 + x 6 = -3;
x 4 ≥ 0; x 5 ≥ 0; x 6 ≥ 0.

Свободные члены в канонической форме должны быть положительными, для этого два последних уравнения умножим на -1:

2x 2 — x 3 + x 4 = 5;
-x 1 — x 2 + x 3 + x 5 = 1;
-2x 1 + x 2 — x 6 = 3.

В канонической форме записи задач линейного программирования все переменные, входящие в систему ограничений, должны быть отрицательными. Допустим, что x 1 = x 1 ‘ — x 7 , где x 1 ‘ ≥ 0, x 7 ≥ 0 .

Подставляя данное выражение в систему ограничений и целевую функцию и, записывая переменные в порядке возрастания индекса, получим задачу линейного программирования, представленную в канонической форме:

L min = 2x 1 ‘ + x 2 — x 3 — 2x 7 ;
2x 2 — x 3 + x 4 = 5;
-x 1 ‘ — x 2 + x 3 + x 5 + x 7 = 1;
-2x 1 ‘ + x 2 — x 6 + 2x 7 = 3;
x 1 ‘ ≥ 0; x i ≥ 0, i=2, 3, 4, 5, 6, 7.

Условие оптимальности базисного плана канонической задачи ЛП. Симплекс-метод и его сходимость.

Симплексный метод является универсальным, так как позволяет решать практически любую задачу линейного программирования, записанную в каноническом виде.

Идея симплексногометода последовательного улучшения плана, заключается в том, что, начиная с некоторого исходного опорного решения, осуществляется последовательно направленное перемещение по опорным решениям задачи к оптимальному.

Значение целевой функции при этом перемещении для задач на максимум не убывает.

Так как число опорных решений конечно, то через конечное число шагов получим оптимальное опорное решение.

Опорным решением называется базисное неотрицательное решение.

Алгоритм симплексного метода

1. Математическая модель задачи должна быть канонической. Если она неканоническая, то ее надо привести к каноническому виду.

2. Находим исходное опорное решение и проверяем его на оптимальность.
Для этого заполняем симплексную таблицу 1.
Все строки таблицы 1-го шагазаполняем по данным системы ограничений и целевой функции.

Возможны следующие случаи при решении задач на максимум:

1. Если все коэффициенты последней строки симплекс-таблицы Dj ³ 0, то найденное

решение оптимальное.

2 Если хотя бы один коэффициент Dj £ 0, но при соответствующей переменной нет ни одного положительного оценочного отношения, то решение задачи прекращаем , так как F(X) ® ¥ , т.е.целевая функция не ограничена в области допустимых решений.

Если хотя бы один коэффициент последней строки отрицателен, а при соответствующей переменной есть хотя бы одно положительное оценочное отношение, то нужно перейти к другому опорному решению.

Если отрицательных коэффициентов в последней строке несколько, то в столбец базисной переменной (БП) вводят ту переменную , которой соответствует наибольший по абсолютной величине отрицательный коэффициент.

5. Если хотя бы один коэффициент Dk < 0 ,то k — тый столбец принимаем за ведущий.

6. За ведущую строку принимаем ту, которой соответствует минимальное отношение свободных членов bi к положительным коэффициентам ведущего, k – того столбца.

7. Элемент, находящийся на пересечении ведущих строк и столбца, называется ведущим элементом.

Заполняем симплексную таблицу 2:

· заполняем базисный столбец нулями и единицей

· переписываем ведущую строку, разделив ее на ведущий элемент

· если ведущая строка имеет нули, то в следующую симплекс-таблицу можно перенести соответствующие столбцы

· остальные коэффициенты находим по правилу “прямоугольника”

Получаем новое опорное решение, которое проверяем на оптимальность:

Если все коэффициенты последней строки Dj ³ 0, то найденное решение максимальное.

Если нет, то заполняем симплексную таблицу 8-го шага и так далее.

Если целевая функция F(X) требует нахождения минимального значения , то критерием оптимальности задачи является неположительность коэффициентов Dj при всех j = 1,2,…n.

Сходимость симплекс-метода. Вырожденность в задачах ЛП. Важнейшим свойством любого вычислительного, алгоритма является сходимость, т. е. возможность получения в ходе его применения искомых результатов (с заданной точно­стью) за конечное число шагов (итераций).

Легко заметить, что проблемы со сходимостью симплекс-ме­тода потенциально могут возникнуть на этапе выбора значения r (п. 2") в случае, когда одинаковые минимальные значения от­ношения

будут достигнуты для нескольких строк таблицы Т (q) одновре­менно. Тогда на следующей итерации столбец b(β(q+1)) будет со­держать нулевые элементы.

⇐ Предыдущая12345Следующая ⇒

Дата публикования: 2015-11-01; Прочитано: 4190 | Нарушение авторского права страницы

Studopedia.org — Студопедия.Орг — 2014-2018 год.(0.002 с)…

Оптимальное решение — задача — линейное программирование

Cтраница 1

Оптимальное решение задачи линейного программирования достигается в одной из опорных точек, где по крайней мере k п, — т переменных равны нулю.  

Используя оптимальное решение задачи линейного программирования, можно найти допустимые изменения ДС, при которых еще L остается постоянным.  

Если существует оптимальное решение задачи линейного программирования, то существует базисное оптимальное решение.  

Доказано, что оптимальное решение задачи линейного программирования находится на границе области допустимых значений управляемых переменных, представляющей собой многогранник в n — мерном пространстве и определенный системой линейных ограничений.  

Поскольку z — оптимальное решение задачи линейного программирования, имеющей т ограничений, в этом решении содержится не более чем т строго положительных переменных.  

Доказано , что оптимальное решение задачи линейного программирования находится на границе области допустимых значений управляемых переменных, представляющей собой многогранник в / г-мерном пространстве, определенной системой линейных ограничений. Координаты каждой вершины определяются путем решения системы уравнений (ограничения) и при наличии п управляемых переменных и m ограничений приходится Ст п разрешать систему из т уравнений. Сочетание Спт п (т — п очень быстро растет с увеличением тип, поэтому поиск решения требует очень большого числа вычислений, недоступных даже для ЭВМ.  

Итак, в случае D 1 оптимальное решение задачи линейного программирования оказывается автоматически целочисленным.  

Как было показано в части 1, оптимальное решение задачи линейного программирования отнюдь не обязательно целрчислен-но, и в то же время существует много задач, природа которых требует целочисленности решения. Некоторые из этих задач на первый взгляд не являются задачами целочисленного программирования, однако они могут быть сформулированы как таковые.  

Очевидно, что не всякое базисное решение является оптимальным решением задачи линейного программирования. Однако оптимальное решение невырожденной задачи всегда должно быть базисным для системы уравнений (VIII, 42), и, таким образом, задача отыскания оптимального решения заключается в переборе только базисных решений системы уравнений (VIII, 42), среди которых отыскивается оптимальное.  

Очевидно, что не всякое базисное решение является оптимальным решением задачи линейного программирования. Однако оптимальное решение невырожденной задачи всегда должно быть базисным для системы уравнений (VIII42) и, таким образом, задача отыскания оптимального решения заключается в переборе только базисных решений системы уравнений (VIII42), среди которых отыскивается оптимальное.  

После выполнения нескольких итераций на шаге 3 могут появиться многочисленные альтернативные оптимальные решения задачи линейного программирования.

ЗАДАЧА ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

Такое зацикливание иногда называют сплошной вырожденностью. К сожалению, это явление часто возникает в задачах средней PI большой размерности. Имеется также много примеров задач малой размерности (не более 10 переменных и уравнений), при решении которых для достижения сходимости потребуются тысячи итераций.  

В этих случаях используется симплекс-метод, который представляет собой итеративную (пошаговую) процедуру для определения оптимального решения задачи линейного программирования. Расчеты по симплекс-методу начинают с определения допустимого решения, а затем отыскиваются другие допустимые решения и проверяются возможности их улучшения. Переход от одного решения к другому продолжается до тех пор, пока новые улучшения не будут невозможны. Широко распространены стандартные компьютерные программы, которые используют симплекс-метод для решения таких управленческих задач, которые можно представить как задачи линейного программирования.  

Если система линейных ограничений обладает специальной структурой, например если она образует сетевую модель, то на шаге 2 при нахождении оптимального решения задачи линейного программирования это обстоятельство можно использовать.  

Идея пропорционального распределения была реализована в виде двухэтапного алгоритма расчетов, предложенного И.И.Дикиным , в котором существенно используется свойство метода внутренних точек вырабатывать относительно внутреннюю точку множества оптимальных решений задачи линейного программирования. Это свойство означает, что граничные значения по условиям-неравенствам (2.3.2) — (2.3.4) достигаются только для тех переменных, которые имеют эти граничные значения при любом другом оптимальном решении.  

Страницы:      1    2

Графический метод решения задачи линейного программирования

Рассмотрим ЗЛП в стандартной форме для случая двух переменных :

(10)

Пусть система неравенств (10) совместна (имеет хотя бы одно решение). Любое неравенство этой системы геометрически определяет полуплоскость с граничной прямой Условия не отрицательности определяют полуплоскости с соответственными граничными прямыми и .

Так как система совместна, то полуплоскости, как выпуклые множества, пересекаясь, образуют общую часть, которая является выпуклым множеством и представляет собой совокупность точек, координаты каждой из которых являются решением данной системы. Совокупность всех этих точек называется многоугольником решений. Это может быть точка, отрезок, луч, прямая, замкнутый многоугольник, неограниченная многоугольная область.

Решение ЗЛП геометрически представляет собой поиск такой точки многоугольника решений, координаты которой доставляют целевой функции наибольшее (наименьшее) значение. Причем допустимым решением являются все точки многогранника.

Рассмотрим так называемую линию уровня целевой функции z , то есть линию, вдоль которой эта функция принимает одно и то же фиксированное значение : или

Алгоритм решения задачи линейного программирования графическим методом (число переменных ).

1. Строится многоугольная область допустимых решений на плоскости соответствующая ограничениям. Затем строится вектор-градиент

целевой функции z в любой точке область допустимых решений.

2. Прямая (линия уровня функции z ), перпендикулярная вектору-градиенту, передвигается параллельно самой себе в направлении вектора-градиента в случае задачи на максимум (и в противоположном направлении — в случае задачи на минимум) до тех пор, пока она не покинет область допустимых решений. Предельная точка (или точки) области являются оптимальными точками.

3. Для нахождения координат оптимальной точки, надо решить систему уравнений, которая соответствует прямым, пересечение которых образует эту точку.

Формулировка основных типов задач ЛП, построение их математических моделей

Значение целевой функции в этой точке будет оптимальным, а сами координаты точки будут являться решением задачи ЛП.

Пример. Решить геометрически задачу:

Построим многоугольник всех допустимых решений OABCD и направляющий вектор целевой функции (Рис. 1). Направление вектора-градиента указывает направление возрастания целевой функции. Так как рассматриваемая задача на отыскание максимума, то прямую, перпендикулярную вектору перемещаем в направлении этого вектора параллельно самой себе до тех пор, пока эта прямая не покинет область допустимых решений. На границе области, в нашем случае в точке С , и будет решение задачи. Точка С находится на пересечении прямых и . Следовательно, ее координаты определяются решением системы этих уравнений уравнении:

откуда т.е. точка С имеет координаты (6, 4).

Максимум (максимальное значение целевой функции) равен: Ответ: при оптимальном решении т.е. максимальна прибыль может быть достигнута при производстве 6 единиц первой и 4 единиц второй продукции.

ВВЕДЕНИЕ

Современная экономическая теория, как на микро – , так и на макро–уровне, включает как естественный, необходимый элемент математические модели и методы. Использование математики в экономике позволяет, во–первых, выделить и формально описать наиболее важные, существенные связи экономических переменных и объектов: изучение столь сложного объекта предполагает высокую степень абстракции. Во–вторых, из четко сформулированных исходных данных и соотношений методами дедукции можно получать выводы, адекватные изучаемому объекту в той же мере, что и сделанные предпосылки. В–третьих, методы математики и статистики позволяют индуктивным путем получать новые знания об объекте: оценивать форму и параметры зависимостей его переменных, в наибольшей степени соответствующие имеющимся наблюдением. Наконец, в–четвертых, использование языка математики позволяет точно и компактно излагать положения экономической теории, формулировать ее понятия и выводы.

Математические модели, используемые в экономике, можно подразделять на классы по ряду признаков, относящихся к особенностям моделируемого объекта, цели моделирования и используемого инструментария: модели микро– и макроэкономические, теоретические и равновесные, статистические и динамические.

Суть методов оптимизации заключается в том, что исходя из наличия определенных ресурсов выбирается такой способ их использования (распределения), при котором обеспечивается максимум (минимум) интересующего нас показателя.

В качестве методов оптимизации в экономике находят применение все основные разделы математического программирования (планирования).

Математическая дисциплина, занимающаяся изучением экстремальных (максимальных или минимальных) задач управления, планирования и разработкой методов их решения, получила название математического программирования.

В общем, виде математическая постановка экстремальной задачи состоит в определении наибольшего или наименьшего значения целевой функции
при условии ,

где и – заданные функции, а – некоторые действительные числа.

В зависимости от вида функции цели и ограничений математическое программирование делится на линейное и нелинейное. Наиболее

изученным разделом математического программирования является линейное программирование.

Определение.

Задача линейного программирования (стр. 1 из 3)

Линейное программирование – наука о методах использования и отыскания экстремальных (наибольших и наименьших) значений линейной функции, на неизвестные которой наложены линейные ограничения.

Эта линейная функция называется целевой, а ограничения в виде уравнений или неравенств, называется системой ограничений.

Определение. Математическое выражение целевой функции и ее ограничений называется математической моделью экономической задачи.

Рассмотрим некоторые задачи линейного программирования (ЗЛП).

1. Задача об использовании ресурсов (задача планирования производства).

Для изготовления различных изделий предприятие использует три различных вида сырья. Нормы расхода сырья на производство одного изделия , а также общее количество

сырья каждого вида, которое может быть использовано предприятием, приведены в табл.

Составить план производства изделий, при котором общая стоимость всей произведенной предприятием продукции является максимальной.

Построим математическую модель данной задачи.

Обозначим через искомый выпуск изделий , через – изделий ,

через – изделий .

Так как на сырье каждого вида имеются нормы затрат, тогда мы можем найти общий объем затрат сырья каждого вида для изготовления всех изделий. Из таблицы следует, что общий объем сырья I вида составит , II –
,

III –
. А так как на фонд сырья имеются ограничения, следовательно общий объем сырья каждого вида должен быть не больше общего количества сырья, т.е.

получим следующую систему неравенств

(1)

По экономическому смыслу переменные могут принимать только неотрицательные значения:

(2)

Стоимость всех изделий вида составит Соответственно общая стоимость произведенной предприятием продукции составит (3)

Нам необходимо найти этой функции. Таким образом, необходимо среди всех неотрицательных решений системы (1) требуется найти такое, при котором функция (3) принимает максимальное значение.

Данную задачу можно легко обобщить на случай выпуска видов изделий с использованием видов сырья (ресурсов).

Обозначим через – число единиц продукции запланированной к производству, – запас ресурсов – го вида, – удельный расход – го ресурса для изготовления – ой продукции. – прибыль от реализации единицы изделия – го вида.

Тогда экономико – математическая модель задачи об использовании ресурсов в общей постановке примет вид: найти такой план
выпуска продукции, удовлетворяющий основной системе ограничений

дополнительной системе ограничений

при котором целевая функция –

принимает максимальное значение.

Замечание. Чтобы составить математическую модель ЗЛП необходимо:

– ввести обозначения переменных;

– исходя из цели экономических исследований, составить целевую функцию;

– учитывая ограничения в использовании экономических показателей задачи и их количественные закономерности, записать систему ограничений.

Решение задач линейного программирования основываются на понятиях аналитической геометрии в – мерном векторном пространстве.

Приведение общей ЗЛП к каноническому виду.

Общий вид ЗЛП следующий:

(1)

(2)

(3)

где соотношение (1) – целевая функция, (2) – система основных ограничений, (3) – система дополнительных ограничений.

Соотношения (2) и (3) образуют полную систему ограничений.

Приведение системы основных ограничений к каноническому виду осуществляется введением в левые части неравенств дополнительных неотрицательных переменных с коэффициентами «+1», если неравенства вида и «-1», если неравенства вида . В целевую функцию дополнительные переменные входят с нулевыми коэффициентами.

Определение . ЗЛП называется заданной в каноническом виде, если ее система основных ограничений представлена уравнениями.

Определение. ЗЛП называется заданной в стандартной форме канонического вида, если выполняются следующие условия:

1) система основных ограничений представлена уравнениями и все они линейно независимы;

2) число уравнений меньше числа переменных;

3) решается задача минимизации целевой функции;

4) правые части системы основных ограничений неотрицательны;

5) все переменные также неотрицательны.

В большинстве методов решения задач линейного программирования предполагается, что система ограничений состоит из уравнений и естественных условий неотрицательности переменных.

Однако при составлении моделей многих задач ограничения в основном формируются в виде системы неравенств, поэтому необходимо уметь переходить от системы неравенств к системе уравнений.

Это может быть сделано следующим образом:

Возьмем линейное неравенство

и прибавим к его левой части некоторую величину , такую, что неравенство превратилось в равенство

При этом данная величина является неотрицательной.

Пример

Привести к каноническому виду задачу линейного программирования:

Решение:

Перейдем к задаче на отыскивание максимума целевой функции.

Для этого изменим знаки коэффициентов целевой функции.

Для превращения второго и третьего неравенств системы ограничений в уравнения введем неотрицательные дополнительные переменные x 4 x 5 (на математической модели эта операция отмечена буквой Д).

Переменная х 4 вводится в левую часть второго неравенства со знаком "+", так как неравенство имеет вид "≤".

Переменная x 5 вводится в левую часть третьего неравенства со знаком "-", так как неравенство имеет вид "≥".

В целевую функцию переменные x 4 x 5 вводятся с коэффициентом. равным нулю.

Записываем задачу в каноническом виде:

СИМПЛЕКСНЫЙ МЕТОД РЕШЕНИЯ ЗАДАЧ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

Данный метод является методом целенаправленного перебора опорных решений задачи линейного программирования. Он позволяет за конечное число шагов либо найти оптимальное решение, либо установить, что оптимальное решение отсутствует.

Алгоритм симплексного метода решения задач линейного программирования

Для того, чтобы решить задачу симплексным методом необходимо выполнить следующее:

1. Привести задачу к каноническому виду

Тема 8. Линейное программирование

Найти начальное опорное решение с "единичным базисом" (если опорное решение отсутствует, то задача не имеет решение ввиду несовместимости системы ограничений)

3. Вычислить оценки разложений векторов по базису опорного решения и заполнить таблицу симплексного метода

4. Если выполняется признак единственности оптимального решения, то решение задачи заканчивается

5. Если выполняется условие существования множества оптимальных решений, то путем простого перебора находят все оптимальные решения

Пример решения задачи симплексным методом

Пример 1

Решить симплексным методом задачу:

Минимизировать значение функции

F = 10×1 — 4×3 max

При наличии ограничений в виде неравенств

Приводим задачу к каноническому виду.

Для этого в левую часть первого ограничения-неравенства вводим дополнительную переменную x 5 с коэффициентом +1. В целевую функцию переменная x 5 входит с коэффицентом ноль (т.е. не входит).

Получаем:

F = 10×1 — 4×3+0∙x5 max

При наличии ограничений в виде неравенств

Находим начальное опорное решение. Для этого свободные (неразрешенные) переменные приравниваем к нулю х1 = х3 = 0.

Получаем опорное решение Х1 = (0,0,0,5,9/15,6) с единичным базисом Б1 = (А4, А5, А6).

Вычисляем оценки разложений векторов условий по базису опорного решения по формуле:

Δ k = C б X k - c k

· C б = (с 1 , с 2 , … , с m) - вектор коэффициентов целевой функции при базисных переменных

· X k = (x 1k , x 2k , … , x mk) - вектор разложения соответствующего вектора А к по базису опорного решения

· С к - коэффициент целевой функции при переменной х к.

Оценки векторов входящих в базис всегда равны нулю.

Опорное решение, коэффиценты разложений и оценки разложений векторов условий по базису опорного решения записываются в симплексную таблицу:

Сверху над таблицей для удобства вычислений оценок записываются коэффициенты целевой функции. В первом столбце "Б" записываются векторы, входящие в базис опорного решения. Порядок записи этих векторов соответствует номерам разрешенных неизвестных в уравнениях ограничениях. Во втором столбце таблицы "С б " записываются коэффициенты целевой функции при базисных переменных в том же порядке. При правильном расположении коэффициентов целевой функции в столбце "С б " оценки единичных векторов, входящих в базис, всегда равных нулю.

В последней строке таблицы с оценками Δ k в столбце "А 0 " записываются значения целевой функции на опорном решении Z(X 1).

Начальное опорное решение не является оптимальным, так как в задаче на максимум оценки Δ 1 = -2, Δ 3 = -9 для векторов А 1 и А 3 отрицательные.

По теореме об улучшении опорного решения, если в задаче на максимум хотя бы один вектор имеет отрицательную оценку, то можно найти новое опорное решение, на котором значение целевой функции будет больше.

Определим, введение какого из двух векторов приведет к большему приращению целевой функции.

Приращение целевой функции находится по формуле:

Вычисляем значения параметра θ 01 для первого и третьего столбцов по формуле:

Получаем θ 01 = 6 при l = 1, θ 03 = 3 при l = 1 (таблица 26.1).

Находим приращение целевой функции при введении в базис первого вектора

ΔZ 1 = - 6*(- 2) = 12,

и третьего вектора ΔZ 3 = - 3*(- 9) = 27.

Следовательно, для более быстрого приближения к оптимальному решению необходимо ввести в базис опорного решения вектор А3 вместо первого вектора базиса А6, так как минимум параметра θ 03 достигается в первой строке (l = 1).

Производим преобразование Жордана с элементом Х13 = 2, получаем второе опорное решение

Х2 = (0,0,3,21,42,0)

с базисом Б2 = (А3, А4, А5).

(таблица 26.2)

Это решение не является оптимальным, так как вектор А2 имеет отрицательную оценку Δ2 = - 6.

Для улучшение решения необходимо ввести вектор А2 в базис опорного решения.

Определяем номер вектора, выводимого из базиса. Для этого вычисляем параметр θ 02 для второго столбца, он равен 7 при l = 2.

Следовательно, из базиса выводим второй вектор базиса А4.

Производим преобразование Жордана с элементом х 22 = 3, получаем третье опорное решение

Х3 = (0,7,10,0,63,0)

Б2 = (А3, А2, А5) (таблица 26.3).

Это решение является единственным оптимальным, так как для всех векторов, не входящих в базис оценки положительные

Δ 1 = 7/2, Δ 4 = 2, Δ 6 = 7/2.

Ответ : max Z(X) = 201 при Х = (0,7,10,0,63).

⇐ Предыдущая123456789Следующая ⇒

Основные понятия моделирования

В процессе жизнедеятельности человека вырабатываются представления о тех или иных свойствах реальных объектов и их взаимодействиях. Эти представления формируются человеком в виде описаний объектов, для которых используются язык описания. Это может быть словесное описание (вербальные модели), рисунок, чертеж, график, макет и т. п. Все перечисленное обобщается одним понятием модель, а процесс построения моделей – моделированием.

Моделирование – это универсальный способ изучения процессов и явлений реального мира. Особое значение моделирование приобретает при изучении объектов, недоступных прямому наблюдению и исследованию. К ним, в частности, относятся социально-экономические явления и процессы.

Изучение любого объекта, любой формы движения – это раскрытие не только его качественных, но и количественных закономерностей, изучаемых математикой. Сказанное в полной мере относится к экономике.

Экономика – это система общественного производства, осуществляющая собственно производство, распределение, обмен и потребление необходимых обществу материальных благ.

Соответственно, экономико-математическая модель – это выраженная в формально-математических терминах экономическая абстракция, логическая структура которой определяется как объективными свойствами предмета описания, так и субъективным целевым фактором исследования, для которого это описание предпринимается.

Экономико-математические задачи в сельском хозяйстве решаются с помощью математических методов. Среди них наиболее разработанными являются методы линейного программирования (ЛП). Такие методы используются для решения экономико-математических задач, в которых количественные зависимости выражены линейно, т.е. все условия выражены в виде системы линейных уравнений и неравенств, а критерий оптимальности – в виде линейной функции, стремящейся к минимуму или максимуму (к экстремуму).

Задача линейного программирования состоит из целевой функции, системы ограничений и условия неотрицательности переменных.

Пусть дана функция n переменных Необходимо найти наибольшее или наименьшее значение этой функции при условии, что аргумент

Поставленная таким образом задача оптимизации называется задачей математического программирования. Множество Х называется множеством допустимых решений, а функция целевой функцией или функцией цели. Допустимое решение при котором функция принимает наибольшее (или наименьшее) значение, называется оптимальным решением задачи.

Если целевая функция является линейной, а множество Х задается с помощью системы линейных уравнений и неравенств, то задача называется задачей линейного программирования (ЗЛП). Таким образом, общая постановка задачи линейного программирования такова:

найти экстремум функции

при ограничениях

при условиях неотрицательности

Введем обозначения:

Запасы i –го вида ресурса;

затраты i –го вида ресурса на производство j –го вида продукции;

прибыль от реализации единицы j –го вида продукции.

В компактной записи задача линейного программирования имеет вид:

Компактная запись показывает, что модель общей задачи линейного программирования включает пять основных элементов:

Переменные величины, значение которых отыскивается в процессе решения задачи;

Технико-экономические коэффициенты при переменных в ограничениях;

Объем правой части неравенств, которые называют константами задачи;

Коэффициенты при переменных в целевой функции, которые называют оценками переменных;

Индекс переменной;

Индекс ограничения.

Целевой функцией (функцией цели) называется математическое выражение, для которого требуется найти экстремальное, то есть максимальное или минимальное, значение.

Переменными величинамиx j обозначают такие виды и способы деятельности, размеры которых неизвестны и должны быть определены в ходе решения задачи. Обычно в задачах по сельскому хозяйству переменные величины означают искомые размеры отраслей хозяйства, виды кормов в рационе, марки тракторов и сельскохозяйственных машин и т.д. В соответствии с конкретными условиями одна и та же культура или вид скота могут выражаться нескольким переменными. Например, зерно товарное и фуражное; кукуруза на зерно, силос, зеленый корм; многолетние травы на сено, сенаж, зеленый корм, травяную муку и семена и т.д.

Переменные величины могут произвольно изменяться в условиях рассматриваемой задачи. Переменная, коэффициенты которой образуют единичный столбец, называется базисной. Базисные переменные образуют единичный базис системы. Переменные,не входящие в единичный базис, называются свободными.

Общее количество переменных, включаемых в задачу, определяется характером задачи, конкретными условиями производства, возможностью сбора информации и т.д.

Переменные могут выражаться в самых различных единицах измерения: га, ц, кг, шт., головах и т.д. По характеру переменные подразделяют на основные, дополнительные и вспомогательные. К основным переменным относят искомые виды деятельности: отрасли хозяйства, виды кормов, марки машин. Дополнительными называют переменные, которые образуют в процессе превращения неравенств в уравнения. Они могут означать недоиспользованную часть ресурсов, излишек над правой частью неравенства (если это неравенство типа «не более»). Вспомогательные переменные включают в задачу для того, чтобы определить расчетные величины приобретаемых производственных ресурсов, расчетные величины показателей экономической эффективности производства.

Дополнительные и вспомогательные переменные всегда имеют единичные коэффициенты (+1 или –1).

Технико-экономические коэффициенты (a ij) при переменных в системе ограничений выражают нормы затрат производственных ресурсов или норму выхода продукции в расчете на единицу измерения переменной величины.

И в том и в другом случае необходимо, чтобы технико-экономи-ческие коэффициенты точно соответствовали тому периоду планирования, на который решается задача. Например, если задача решается для экономико-математического анализа производства за прошлый период, то коэффициенты будут рассчитываться по отчетным данным. Если же она решается на перспективу, то и коэффициенты должны быть рассчитаны на эту перспективу.

Нормы затрат ресурсов чаще всего определяются по справочникам, они должны быть скорректированы на соответствующие конкретные условия. Коэффициенты выхода продукции рассчитывают на основе плановой урожайности культур и продуктивности животных.

В случаях, когда необходимо предусмотреть заранее определенные соотношения между переменными, технико-экономические коэффициенты представляют коэффициенты пропорциональности. Например, долю сельскохозяйственных культур в севообороте или долю какого-либо корма в общей группе кормов и т.д.

Правой части ограничений (b i) называют константами, т.е. постоянными величинами. К ним относят объемы производственных ресурсов – земли, труда, техники, удобрений, капиталовложений и т.д. Производственные ресурсы должны быть определены с учетом их фактического состояния и обязательно учитывать период планирования. Кроме того, те производственные ресурсы, использование которых в течение года неравномерно, рассчитывают не только за год в целом, но и по отдельным напряженным периодам или месяцам (трудовые ресурсы).

Производственные ресурсы определяют в различных единицах: земельные угодья – в га, трудовые ресурсы – в чел.–днях или в чел.–ч, технику – в количестве машино–смен, сменной или суточной выработки и т.д.

Таким образом, определение наличия производственных ресурсов не простое дело. Необходимо тщательно проанализировать производственную деятельность хозяйства, использование трудовых, земельных, технических и прочих ресурсов, и только после этого включать их объемы в ограничения.

В правой части ограничений отражаются не только количество ресурсов, но и объем производимой продукции по верхнему или нижнему уровню. Нижний уровень показывается в тех случаях, когда заранее известен объем продукции, меньше которого хозяйство не должно производить, а верхний не допускает производство продукции выше определенного объема. Эти ограничения обязательны не всегда. Однако почти ни в одной задаче, предусматривающей определение сочетания отраслей, не обходятся без соответствующих ограничений по продукции, иначе получится однобокое решение. Это связано с тем, что эффективность отраслей неодинаково.

Во всех остальных ограничениях в правой части ставятся нули, так как в них формулируются условия по производству и использованию продукции или отражают ограничения пропорциональной связи.

Ограничение – это математическое выражение, связывающее переменные в виде равенств и неравенств. Все ограничения образуют систему ограничений задачи. Система ограничений в математической форме характеризует условия задачи. Полнота отражения этих условий зависит от состава ограничений. Поэтому при определении количества ограничений необходимо учитывать два обстоятельства:

v отражать в задаче только те условия, которые действительно ограничивают возможности производства;

v слишком большое количество ограничений увеличивает размеры задачи и делает ее трудноразрешимой

Ограничения бывают трех типов: равенства (=), неравенства типа меньше либо равно (≤), неравенства типа больше либо равно (≥). Например,

где i = 1, 2, … , m . Коэффициенты при переменных обозначаются a ij , где индекс i – номер ограничения, индекс j – номер переменной, свободные члены (правая часть ограничений) обозначаются b i , индекс i – номер ограничения.

Ограничения первого типа называют ограничениями сверху, так как левая часть неравенства не может быть выше определенной величины (константы). Ограничения третьего типа получили название ограничения снизу, так как левая часть неравенства не может быть ниже определенной величины (константы).

По смыслу все ограничения можно подразделить на основные, дополнительные и вспомогательные.

Основные ограничения – это те, которые накладываются на все или большинство переменных задач. Как правило, с их помощью отражаются основные условия задачи – по земле, труду, кормам, питательным веществам, технике и т.д.

Дополнительные ограничения накладываются на часть переменных величин или на одну переменную. Эти ограничения вводятся в тех случаях, когда необходимо ограничить сверху или снизу размеры отдельных переменных, например, с учетом севооборотных требований или с учетом физиологических пределов насыщения рациона отдельными кормами или их группами. Таким образом, дополнительные ограничения отражают различные возникающие в процессе моделирования дополнительные условия. Но каждое дополнительное ограничение сужает область свободы выбора. Поэтому вводить их в задачу следует осторожно, в разумных пределах и в необходимых случаях.

Вспомогательные ограничения, как правило, самостоятельного значения не имеют и вводятся в задачу для формализации отдельных условий. К ним относятся ограничения, устанавливающие пропорциональную связь между отдельными переменными или их группами.

Оценка переменных в целевой функции (с j) являются коэффициентами, выражающими величину общего дохода или затрат в расчете на единицу измерения переменной. Оценка переменной, как правило, выражает принятый критерий оптимальности. Она может быть представлена и в натуральной, и в денежной форме, т.е. затраты на единицу продукции (себестоимость продукции).

Условие неотрицательности переменных записывается в виде

x j ≥ 0, j = 1, 2, …, n .

В реальной жизни производства, исходя из условий задания, по данной записи структурной экономико-математической модели (ЭММ) составляется перечень переменных величин и ограничений, подготавливается исходная информация, строится развернутая ЭММ задачи, которая затем записывается в виде матрицы (таблицы), вводится в компьютер и по соответствующей программе производится расчет и анализ результатов.i = 1, …, m , (1.5)

j = 1, …, n . (1.6)

Вектор x = (x 1 , x 2 , …, x n), компоненты x j которого удовлетворяют ограничениям (1.2) и (1.3) [или (1.5) и (1.6) в задаче на минимум], называется допустимым решением или допустимым планом задачи ЛП. Совокупность всех допустимых планов называется множеством допустимых планов.

Каноническая форма задачи линейного программирования характерна тем, что содержит целевую функцию, все ограничения равенства , все переменные неотрицательные.

Любую задачу линейного программирования можно свести к задаче линейного программирования в канонической форме. Для этого в общем случае нужно уметь сводить задачу максимизации к задаче минимизации; переходить от ограничений неравенств к ограничениям равенств и заменять переменные, которые не подчиняются условию неотрицательности.

Правило приведения задачи линейного программирования к каноническому виду состоит в следующем:

1) если в исходной задаче требуется определить максимум линейной функции, то следует изменить знак и искать минимум этой функции;

2) если в ограничениях правая часть отрицательна, то следует умножить это ограничение на – 1;

3) если среди ограничений имеются неравенства, то путем введения дополнительных переменных неотрицательных переменных они преобразуются в равенства. Например, дополнительные переменные S j в ограничения типа меньше либо равно (£) вводятся со знаком плюс:

Дополнительные переменные S j в ограничения типа больше либо равно (≥) вводятся со знаком минус:

Для устранения отрицательности дополнительных переменных – S j вводят искусственные переменные со знаком плюс + М j c очень большими значениями.

На практике ограничения в задаче линейного программирования часто задаются не уравнениями, а неравенствами.

Покажем, как можно перейти от задачи с ограничениями-неравенствами к основной задаче линейного программирования.

Пусть имеется задача линейного программирования с переменными , в которой ограничения, наложенные на переменные, имеют вид линейных неравенств. В некоторых из них знак неравенства может быть а других (второй вид сводится к первому простой переменой знака обеих частей). Поэтому зададим все ограничения-неравенства в стандартной форме:

Требуется найти такую совокупность неотрицательных значений которая удовлетворяла бы неравенствам (4.1), и, кроме того, обращала бы в минимум линейную функцию:

От поставленной таким образом задачи легко перейти к основной задаче линейного программирования. Действительно, введем обозначения:

где - некоторые новые переменные, которые мы будем называть «добавочными». Согласно условиям (4.1), эти добавочные переменные так же, как и должны быть неотрицательными.

Таким образом, перед нами возникает задача линейного программирования в следующей постановке: найти такие неотрицательные значения переменных чтобы они удовлетворяли системе уравнений (4.3) и одновременно обращали в минимум линейную функцию этих переменных:

Как видно, перед нами в чистом виде основная задача линейного программирования (ОЗЛП). Уравнения (4.3) заданы в форме, уже разрешенной относительно базисных переменных которые выражены через свободные переменные Общее количество переменных равно , из них «первоначальных» и «добавочных». Функция L выражена только через «первоначальные» переменные (коэффициенты при «добавочных» переменных в ней равны нулю).

Таким образом, задача линейного программирования с ограничениями-неравенствами сведена нами к основной задаче линейного программирования, но с большим числом переменных, чем первоначально было в задаче.

Пример 1 Имеется задача линейного программирования с ограничениями-неравенствами: иайти неотрицательные значения переменных удовлетворяющие условиям

и обращающие в минимум линейную функцию

Требуется привести эту задачу к виду ОЗЛП.

Решение. Приводим неравенства (4.4) к стандартной форме;

Вводим дополнительные переменные:

Задача сводится к тому, чтобы найти неотрицательные значения переменных

удовлетворяющие уравнениям (4.6) и обращающие в минимум линейную функцию (4.5).

Мы показали, как от задачи линейного программирования с ограничениями-неравенствами можно перейти к задаче с ограничениями-равенствами (ОЗЛП). Всегда возможен и обратный переход - от ОЗЛП к задаче с ограничениями-неравенствами. Если в первом случае мы увеличивали число переменных, то во втором случае будем его уменьшать, устраняя базисные переменные и оставляя только свободные.

Пример 2. Имеется задача линейного программирования с ограничениями-равенствами (ОЗЛП):

и минимизируемой функцией

Требуется записать ее как задачу линейного программирования с ограничениями-неравенствами.

Решение. Так как , то выберем какие-то две из переменных в качестве свободных. Заметим, что переменные в качестве свободных выбирать нельзя, так как они связаны первым из уравнений (4 7): значение одной из них полностью определяется значением другой, а свободные переменные должны быть независимыми

По такой же причине нельзя в качестве свободных выбрать переменные (их связывает второе уравнение ). Выберем в качестве свободных переменные и выразим через них все остальные:

Так как условия (4 9) могут быть заменены неравенствами:

Перейдем в выражении линейной функции L к свободным переменным Подставляя в L вместо и их выражения (4.9). получим.

Определение. Линейное программирование (ЛП)- наука о ме­тодах исследования и отыскания экстремальных (наибольших и наименьших) значений линейной функции, на неизвестные которой наложены линейные ограничения.

Эта линейная функция называется целевой, а ограничения, которые математически записываются в виде уравнений или неравенств, называются системой ограничений.

Определение. Математическое выражение целевой функ­ции и ее ограничений называется математической моделью экономической задачи.

В общем виде математическая модель задачи линейного программирования (ЛП) записывается как

при ограничениях:

где x j - неизвестные; a ij , b i , c j - заданные постоянные вели­чины.

Все или некоторые уравнения системы ограничений могут быть записаны в виде неравенств.

Математическая модель в более краткой записи имеет вид

при ограничениях:

Определение. Допустимым решением (планом) зада­чи линейного программирования называется вектор = (x 1 , x 2 ,..., x п), удовлетворяющий системе ограничений.

Множество допустимых решений образует область допус­тимых решений (ОДР).

Определение. Допустимое решение, при котором целевая функция достигает своего экстремального значения, называ­ется оптимальным решением задачи линейного программиро­вания и обозначается опт.

Базисное допустимое решение 1 , х 2 ,..., x r , 0, …, 0) яв­ляется опорным решением, где r - ранг системы ограничений.

Математическая модель задачи ЛП может быть каноничес­кой и неканонической.

7.Решение задач линейного программирования графическим методом . Графики функций-ограничений. Линии уровня.

Графический метод решения задач линейного программирования

Наиболее простым и наглядным методом линейного про­граммирования является графический метод. Он применяется для решения задач ЛП с двумя переменными, заданными в не­канонической форме, и многими переменными в канонической форме при условии, что они содержат не более двух свободных переменных.



С геометрической точки зрения в задаче линейного про­граммирования ищется такая угловая точка или набор точек из допустимого множества решений, на котором достигается самая верхняя (нижняя) линия уровня, расположенная дальше (ближе) остальных в направлении наискорейшего роста.

Для нахождения экстремального значения целевой функ­ции при графическом решении задач ЛП используют вектор L () на плоскости Х 1 ОХ 2 , который обозначим . Этот вектор показывает направление наискорейшего изменения це­левой функции. Другими словами вектор - нормаль линии уровня L ()

где е 1 и е 2 - единичные векторы по осям OX 1 и ОX 2 соответ­ственно; таким образом, = (∂L/∂х 1 , ∂L/∂х 2 ). Координатами вектора являются коэффициенты целевой функции L(). Построениелинии уровня будет рассмотрено подробно при решении практических задач.

Алгоритм решения задач

1. Находим область допустимых решений системы ограни­чений задачи.

2. Строим вектор .

3. Проводим линию уровня L 0 , которая перпендикулярна .

4. Линию уровня перемещаем по направлению вектора для задач на максимум и в направлении, противоположном , для задач на минимум.

Перемещение линии уровня производится до тех пор, пока у нее не окажется только одна общая точка с областью допусти­мых решений. Эта точка, определяющая единственное решение задачи ЛП, и будет точкой экстремума.

Если окажется, что линия уровня параллельна одной из сторон ОДР, то в таком случае экстремум достигается во всех точках соответствующей стороны, а задача ЛП будет иметь бесчисленное множество решений. Говорят, что такая задача ЛП имеет альтернативный оптимум, и ее решение находится по формуле:

Где 0 ≤ t ≤ 1, 1 и 2 - оптимальные решения в угловых точках ОДР.

Задача ЛП может быть неразрешима, когда определяющие ее ограничения окажутся противоречивыми.

5. Находим координаты точки экстремума и значение це­левой функции в ней.

Пример 3. Выбор оптимального варианта выпуска изделий

Фирма выпускает 2 вида мороженого: сливочное и шоко­ладное. Для изготовления мороженого используются два ис­ходных продукта: молоко и наполнители, расходы которых на 1 кг мороженого и суточные запасы даны в таблице.

Изучение рынка сбыта показало, что суточный спрос на сливочное мороженое превышает спрос на шоколадное мороженное, но не бо­лее чем на 100 кг.

Кроме того, установлено, что спрос на шо­коладное мороженое не превышает 350 кг в сутки. Розничная цена 1 кг сливочного мороженого 16 р., шоколадного - 14 р.

Какое количество мороженого каждого вида должна про­изводить фирма, чтобы доход от реализации продукции был максимальным?

Решение. Обозначим: x 1 - суточный объем выпуска сли­вочного мороженого, кг; x 2 - суточный объем выпуска шоко­ладного мороженого, кг.

Составим математическую модель задачи.

Цены на мороженное известна: соответственно 16руб и 14руб., поэтому целевая функция будет иметь вид:

Установим ограничения по молоку для мороженного. Расход его на сливочное мороженное - 0,8кг, на шоколадное - 0,5кг. Запас молок 400кг. Поэтому первое неравенство будет иметь вид:

0,8х 1 + 0,5х 2 ≤400 – первое неравенство – ограничение. Аналогично составляются остальные неравенства.

В результате получится система неравенств. что область решения каждого неравенства. Это можно сделать, подставив в каждое из неравенств координаты точки О(0:0). В результате получим:

Фигура OABDEF - область допустимых решений. Строим вектор (16; 14). Линия уровня L 0 задается уравнением 16x 1 +14x 2 =Const. Выбираем любое число, например число 0, тогда 16x 1 +14x 2 =0. На рисунке для линии L 0 выбрано некоторое положительное число, не равное нулю. Все линии уровня параллельны между собой. Вектор нормаль линии уровня.

Перемещаем линию уровня по направлению вектора. Точ­кой выхода L 0 из области допустимых решений является точка D , ее координаты определяются как пересечение прямых, за­данных уравнениями:

Решая систему, получим координаты точки D (312,5; 300), в которой и будет оптимальное решение, т.е.

Таким образом, фирма должна выпускать в сутки 312,5 кг сли­вочного мороженого и 300 кг шоколадного мороженого, при этом доход от реализации составит 9 200 р.

8.Сведение произвольной задачи линейного программирования к основной задаче. Преобразование ограничений, заданных неравенствами в соответствующие уравнения.

9.Симплекс-метод . Характеристика и алгоритм метода, применимость его.

Для решения задачи симплекс методом необходимо :

1. Указать способ нахождения оптимального опорного решения

2. Указать способ перехода от одного опорного решения к другому, на котором значение целевой функции будет ближе к оптимальному, т.е. указать способ улучшения опорного решения

3. Задать критерии, которые позволяют своевременно прекратить перебор опорных решений на оптимальном решении или сдать заключение об отсутствии оптимального решения.

Алгоритм симплексного метода решения задач линейного программирования

1. Привести задачу к каноническому виду

2. Найти начальное опорное решение с "единичным базисом" (если опорное решение отсутствует, то задача не имеет решение, в виду несовместимости системы ограничений)

3. Вычислить оценки разложений векторов по базису опорного решения и заполнить таблицу симплексного метода

4. Если выполняется признак единственности оптимального решения, то решение задачи заканчивается

5. Если выполняется условие существования множества оптимальных решений, то путем простого перебора находят все оптимальные решения

10.Транспортная задача. Определение, виды, методы нахождения начального решения транспортной задачи.

Транспортная задача - одна из распространенных задач линейного программирования. Ее цель - разработка наиболее рациональных путей и способов транспортирования товаров, устранение чрезмерно дальних, встречных, повторных перево­зок.

1. Нахождение исходного опорного решения;

2. Проверка этого решения на оптимальность;

3. Переход от одного опорного решения к другому.

МОДЕЛЬ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

1 Математическое описание модели линейного программирования

2 Методы реализации моделей линейного программирования

3 Двойственная задача линейного программирования

Модель линейного программирования (ЛП) имеет место, если в исследуемой системе (объекте) ограничения на переменные и целевая функция линейны .

Модели ЛП используются для решения двух основных типов прикладных задач:

1) оптимального планирования в любых сферах человеческой деятельности – социальной, экономической, научно-технической и военной. Например, при оптимальном планировании производства: распределении финансовых, трудовых и других ресурсов, снабжении сырьем, управлении запасами и т. д.

2) транспортной задачи (нахождение оптимального плана различного рода перевозок, оптимального плана распределения разных средств по объектам различного назначения и т. п.)

МАТЕМАТИЧЕСКОЕ ОПИСАНИЕ МОДЕЛИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ

Требуется найти неотрицательные значения переменных

удовлетворяющих линейным ограничениям в виде равенств и неравенств

,

где – заданные числа,

и обеспечивающих экстремум линейной целевой функции

,

где – заданные числа, что записывается в виде

Допустимым решением называется любая совокупность , удовлетворяющих условиям.

Область допустимых решений – множество всех допустимых решений.

Оптимальное решение
, для которого .

Замечания

1. Приведенная модель ЛП является общей . Различают также стандартные и канонические формы моделей ЛП.

2. Условия существования реализации модели ЛП:

– множество допустимых решений – не пустое;

– целевая функция ограничена на (хотя бы сверху при поиске максимума и снизу при поиске минимума).

3.ЛП основывается на двух теоремах

Теорема 1. Множество G , определяемое системой ограничений вида, есть выпуклое замкнутое множество (выпуклый многогранник в с угловыми точками - вершинами .)

Теорема 2. Линейная форма , определенная на выпуклом многограннике

j =1,2,…,s

i=s +1,s+2,…,m ,

достигает экстремума в одной из вершин этого многогранника.

Данная теорема получила название теоремы об экстремуме линейной формы.

В соответствии с теоремой Вейерштрасса оптимальное решение единственно и является глобальным экстремумом.

Существует общий аналитический подход к реализации модели ЛП – симплекс-метод. При решении задач линейного программирования достаточно часто решения нет. Это происходит по следующим причинам.

Первую причину проиллюстрируем примером

Про такую причину говорят, что ограничения несовместны. Область допустимых решений – пустое множество.

Вторая причина комментируется следующим примером:

В данном случае, область допустимых решений не ограничена сверху. Область допустимых решений не ограничена.

Следуя традициям линейного программирования, дадим задаче ЛП экономическую интерпретацию. Пусть в нашем распоряжении имеется m типов ресурсов. Количество ресурса типа j равно . Эти ресурсы необходимы для производства n типов товаров. Обозначим количество этих товаров символами соответственно. Единица товара типа i стоит . Производство товаров типа i должно быть ограничено величинами соответственно. На производство единицы товара типа i расходуется ресурса типа j . Необходимо определить такой план производства товаров (), чтобы их суммарная стоимость была минимальной.

Задачи линейного программирования, используемые для оптимизации функционирования реальных объектов, содержат значительное число переменных и ограничений. Это обуславливает невозможность решения их графическими методами. При большом числе переменных и ограничений применяются алгебраические методы, в основе которых лежат итерационные вычислительные процедуры. В линейном программировании разработано множество алгебраических методов, различающихся между собой способами построения начального допустимого решения и условиями перехода от одной итерации к другой. Однако все эти методы базируются на общих теоретических положениях.

Общность основных теоретических положений приводит к тому, что алгебраические методы решения задач линейного программирования во многом сходны между собой. В частности, практически любой из них требует предварительного приведения задачи линейного программирования к стандартной (канонической) форме.

Алгебраические методы решения задачи ЛП начинаются с приведения ее к стандартной (канонической) форме :

,

,

i =1,..,n ; j =1,..,m .

Любая задача линейного программирования может быть приведена к стандартной форме. Сравнение общей модели с канонической моделью позволяет сделать вывод о том, что для приведения задачи ЛП к стандартной форме необходимо, во-первых, от системы неравенств перейти к равенствам, а во-вторых, преобразовать все переменные так, чтобы они были неотрицательными.

Переход к равенствам осуществляется прибавлением к левой части ограничений неотрицательной остаточной переменной для неравенств типа , и вычитанием из левой части неотрицательной избыточной переменной для неравенств типа . Например, неравенство при переходе к стандартной форме преобразуется в равенство , a неравенство - в равенство . При этом, как остаточная переменная , так и избыточная переменная являются неотрицательными.

Предполагается, что правая часть неравенств неотрицательна. В противном случае, этого можно добиться умножением обеих частей неравенства на «-1» и сменой его знака на противоположный.

Если в исходной задаче линейного программирования переменная не ограничена в знаке, ее можно представить в виде разности двух неотрицательных переменных , где .

Важной особенностью переменных является то, что при любом допустимом решении только одна из них может принимать положительное значение. Это означает, что если , то и наоборот. Следовательно, может рассматриваться как остаточная, а - как избыточная переменные.

Пример Пусть дана задача линейного программирования:

,

.

Необходимо привести ее к стандартной форме. Заметим, что первое неравенство исходной задачи имеет знак , следовательно, в него необходимо ввести остаточную переменную . В результате получим .

Второе неравенство имеет знак и для преобразования к стандартной форме требует введения избыточной переменной , выполнив эту операцию, получим .

Кроме того, переменная не ограничена в знаке. Следовательно, как в целевой функции, так и в обоих ограничениях она должна быть заменена на разность . Выполнив подстановку, получим задачу линейного программирования в стандартной форме, эквивалентную исходной задаче:

.

Задача линейного программирования, записанная в стандартной форме, представляет собой задачу поиска экстремума целевой функции на множестве векторов, являющихся решениями системы линейных уравнений с учетом условий неотрицательности. Как известно, система линейных уравнений может не иметь решений, иметь единственное решение или иметь бесконечное множество решений. Оптимизация целевой функции возможна только в том случае, если система имеет бесконечное множество решений. Система линейных уравнений имеет бесконечное множество решений, если она совместна (ранг основной матрицы равен рангу расширенной) и, если ранг основной матрицы меньше числа неизвестных.

Пусть ранг матрицы системы ограничений равен m . Это значит, что матрица имеет хоть один минор m -го порядка не равный нулю. Не нарушая общности, можно предположить, что минор расположен в левом верхнем углу матрицы. Этого всегда можно добиться, изменив нумерацию переменных. Этот не равный нулю минор ранга m принято называть базисным. Составим систему из первых m уравнений системы, записав ее следующим образом:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .