Основные характеристики сигналов. Классификация видов модуляции, основные характеристики радиосигналов Общие сведения и параметры радиосигналов


Контроль толщины эпитаксиального слоя и уровня легирования производят путем непосредственных измерений. Основное требование к методикам кон троля - это скорость измерения и воспроизводимость. В условиях промышленного производства информация о ходе процесса требуется через относительно небольшие интервалы...
(ОСНОВЫ КОНСТРУИРОВАНИЯ И ТЕХНОЛОГИИ ПРОИЗВОДСТВА РАДИОЭЛЕКТРОННЫХ СРЕДСТВ. ИНТЕГРАЛЬНЫЕ СХЕМЫ)
  • ВИДЫ И ИСТОЧНИКИ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЯ ПАРАМЕТРОВ СИГНАЛОВ В АО ПРОЦЕССОРАХ
    Неидеальность входного тракта Нелинейность амплитудной характеристики Нелинейная зависимость между уровнями сигнала на входе и выходе С’ВЧ-тракта является, со всей очевидностью, источником погрешностей в измерении уровня радиосигнала и источником обогащения спектра сигнала. Точность измерения...
    (АКУСТООПТИЧЕСКИЕ ПРОЦЕССОРЫ. АЛГОРИТМЫ И ПОГРЕШНОСТИ ИЗМЕРЕНИЙ)
  • Измерение параметров импульсных сигналов
    При измерении параметров импульсных сигналов особое значение имеет правильное определение вида и параметров фронтов исследуемого импульса. Основными влияющими факторами на правильное воспроизведение импульсного сигнала являются частотные свойства каната вертикального отклонения осциллографа и переходная...
  • Измерение параметров элементов электрических цепей 7Л. Общие сведения о параметрах элементов
    При эксплуатации телекоммуникационных систем часто возникает необходимость оценки параметров элементов электрических цепей рахтичных радиотехнических устройств. Наиболее распространенными пассивными линейными элементами радиоэлектронных устройств, параметры которых приходится измерять, являются резисторы,...
    (ИЗМЕРЕНИЯ В ТЕЛЕКОММУНИКАЦИОННЫХ СИСТЕМАХ)
  • Спектр электромагнитных излучений техносферы
    Электромагнитное поле представляет собой особую форму материи, посредством которой осуществляется взаимодействие между электрически заряженными частицами. Электромагнитное поле в вакууме характеризуется векторами напряженности электрического поля Е и индукции магнитного поля В, которые определяют силы,...
    (Теоретические основы защиты окружающей среды)
  • Появление спектра взаимообусловленных, взаимодополняемых, разноотраслевых инноваций
    Если в XIX в. и первой половине XX в. не возникало сомнений, что технологические инновации, существующие за пределами какой-либо отрасли промышленности, не имеют на нее никакого влияния, то в настоящее время приходится исходить из представления о том, что основное влияние на организацию и всю отрасль...
    (Управление инновациями)
  • Спектр и тембр звука
    Объективной характеристикой звука является спектр. Но мы подойдем к этому понятию, идя от более традиционного и более ясного понятия "тембр". Оно основывается на понятиях сложного звука и резонанса. Голосовые связки человека можно сравнить со струнами. При колебании струны как единого целого...
    (Современный русский литературный язык)
  • Основные параметры радиосигнала. Модуляция

    § Мощность сигнала

    § Удельная энергия сигнала

    § Длительность сигнала T определяет интервал времени, в течение которого сигнал существует (отличен от нуля);

    § Динамический диапазон есть отношение наибольшей мгновенной мощности сигнала к наименьшей:

    § Ширина спектра сигнала F - полоса частот, в пределах которой сосредоточена основная энергия сигнала;

    § База сигнала есть произведение длительности сигнала на ширину его спектра . Необходимо отметить, что между шириной спектра и длительностью сигнала существует обратно пропорциональная зависимость: чем короче спектр, тем больше длительность сигнала. Таким образом, величина базы остается практически неизменной;

    § Отношение сигнал/шум равно отношению мощности полезного сигнала к мощности шума (S/N или SNR);

    § Объём передаваемой информации характеризует пропускную способность канала связи, необходимую для передачи сигнала. Он определяется как произведение ширины спектра сигнала на его длительность и динамический диапазон

    § Энергетическая эффективность (потенциальная помехоустойчивость) характеризует достоверность передаваемых данных при воздействии на сигнал аддитивного белого гауссовского шума, при условии, что последовательность символов восстановлена идеальным демодулятором. Определяется минимальным отношением сигнал/шум (E b /N 0), которое необходимо для передачи данных через канал с вероятностью ошибки, не превышающей заданную. Энергетическая эффективность определяет минимальную мощность передатчика, необходимую для приемлемой работы. Характеристикой метода модуляции является кривая энергетической эффективности - зависимость вероятности ошибки идеального демодулятора от отношения сигнал/шум (E b /N 0).

    § Спектральная эффективность - отношение скорости передачи данных к используемой полосе пропускания радиоканала.

      • AMPS: 0,83
      • NMT: 0,46
      • GSM: 1,35

    § Устойчивость к воздействиям канала передачи характеризует достоверность передаваемых данных при воздействии на сигнал специфичных искажений: замирания вследствие многолучевого распространения, ограничение полосы, сосредоточенные по частоте или времени помехи, эффект Доплера и др.

    § Требования к линейности усилителей. Для усиления сигналов с некоторыми видами модуляции могут быть использованы нелинейные усилители класса C, что позволяет существенно снизить энергопотребление передатчика, при этом уровень внеполосного излучения не превышает допустимые пределы. Данный фактор особенно важен для систем подвижной связи.

    Модуля́ция (лат. modulatio - размеренность, ритмичность) - процесс изменения одного или нескольких параметров высокочастотного несущего колебания по закону низкочастотного информационного сигнала (сообщения).



    Передаваемая информация заложена в управляющем (модулирующем) сигнале, а роль переносчика информации выполняет высокочастотное колебание, называемое несущим. Модуляция, таким образом, представляет собой процесс «посадки» информационного колебания на заведомо известную несущую.

    В результате модуляции спектр низкочастотного управляющего сигнала переносится в область высоких частот. Это позволяет при организации вещания настроить функционирование всех приёмо-передающих устройств на разных частотах с тем, чтобы они «не мешали» друг другу.

    В качестве несущего могут быть использованы колебания различной формы (прямоугольные, треугольные и т. д.), однако чаще всего применяются гармонические колебания. В зависимости от того, какой из параметров несущего колебания изменяется, различают вид модуляции (амплитудная, частотная, фазовая и др.). Модуляция дискретным сигналом называется цифровой модуляцией или манипуляцией.

    Радиосигналами называют электромагнитные волны или электрические высокочастотные колебания, которые заключают в себе передаваемое сообщение. Для образования сигнала параметры высокочастотных колебаний изменяются (модулируются) с помощью управляющих сигналов, которые представляют собой напряжение, изменяющееся по заданному закону. В качестве модулируемых обычно используются гармонические высокочастотные колебания:

    где w 0 =2πf 0 – высокая несущая частота;

    U 0 – амплитуда высокочастотных колебаний.

    К наиболее простым и часто используемым управляющим сигналам относятся гармоническое колебание

    где Ω – низкая частота, много меньшая w 0 ; ψ – начальная фаза; U m – амплитуда, а также прямоугольные импульсные сигналы, которые характеризуются тем, что значение напряжения U упр (t )=U в течение интервалов времени τ и, называемых длительностью импульсов, и равно нулю в течение интервала между импульсами (рис.1.13). Величина T и называется периодом повторения импульсов; F и =1/T и – частота их повторения. Отношение периода повторения импульсов T и к длительности τ и называется скважностью Q импульсного процесса: Q =T и /τ и.

    Рис.1.13. Последовательность прямоугольных импульсов

    В зависимости от того, какой параметр высокочастотного колебания изменяется (модулируется) с помощью управляющего сигнала, различают амплитудную, частотную и фазовую модуляцию.

    При амплитудной модуляции (АМ) высокочастотных колебаний низкочастотным синусоидальным напряжением частотой Ω мод образуется сигнал, амплитуда которого изменяется во времени (рис.1.14):

    Параметр m =U m /U 0 называют коэффициентом амплитудной модуляции. Его значения заключены в интервале от единицы до нуля: 1≥m≥0. Коэффициент модуляции, выраженный в процентах (т.е. m ×100%), называется глубиной амплитудной модуляции.

    Рис. 1.14. Амплитудно-модулированный радиосигнал

    При фазовой модуляции (ФМ) высокочастотного колебания синусоидальным напряжением амплитуда сигнала остается постоянной, а его фаза получает дополнительное приращение Δy под воздействием модулирующего напряжения: Δy=k ФМ U м sinW мод t , где k ФМ – коэффициент пропорциональности. Высокочастотный сигнал с фазовой модуляцией по синусоидальному закону имеет вид

    При частотной модуляции (ЧМ) управляющий сигнал изменяет частоту высокочастотных колебаний. Если модулирующее напряжение изменяется по синусоидальному закону, то мгновенное значение частоты модулированных колебаний w=w 0 + k ЧМ U м sinW мод t , где k ЧМ – коэффициент пропорциональности. Наибольшее изменение частоты w по отношению к ее среднему значению w 0 , равное Δw М = k ЧМ U м, называется девиацией частоты. Частотно-модулированный сигнал может быть записан следующим образом:


    Величина, равная отношению девиации частоты к частоте модуляции (Δw м /W мод = m ЧМ), называется коэффициентом частотной модуляции.

    На рис.1.14 изображены высокочастотные сигналы при АМ, ФМ и ЧМ. Во всех трех случаях используется одинаковое модулирующее напряжение U мод, изменяющееся по симметричному пилообразному закону U мод (t )= k мод t , где k мод >0 на отрезке времени 0t 1 и k мод <0 на отрезке t 1 t 2 (рис.1.15,а).

    При АМ частота сигнала остается постоянной (w 0), а амплитуда изменяется по закону модулирующего напряжения U АМ (t ) = U 0 k мод t (рис.1.15,б).

    Частотномодулированный сигнал (рис.1.15,в) характеризуется постоянством амплитуды и плавным изменением частоты: w(t ) = w 0 +k ЧМ t . На отрезке времени от t =0 до t 1 частота колебаний увеличивается от значения w 0 до значения w 0 +k ЧМ t 1 , а на отрезке от t 1 до t 2 частота уменьшается опять до значения w 0 .

    Фазомодулированный сигнал (рис.1.15,г) имеет постоянную амплитуду и скачкообразное изменение частоты. Поясним это аналитически. При ФМ под воздействием модулирующего напряжения

    Рис.1.15. Сравнительный вид модулированных колебаний при АМ, ЧМ и ФМ:
    а – модулирующее напряжение; б – амплитудно-модулированный сигнал;
    в – частотно-модулированный сигнал; г – фазомодулированный сигнал

    фаза сигнала получает дополнительное приращение Δy=k ФМ t , следовательно высокочастотный сигнал с фазовой модуляцией по пилообразному закону имеет вид

    Таким образом, на отрезке 0t 1 частота равна w 1 >w 0 , а на отрезке t 1 t 2 она равна w 2

    При передаче последовательности импульсов, например, двоичного цифрового кода (рис.1.16,а), также может использоваться АМ, ЧМ и ФМ. Такой вид модуляции называется манипуляцией или телеграфией (АТ, ЧТ и ФТ).

    Рис.1.16. Сравнительный вид манипулированных колебании при АТ, ЧТ и ФТ

    При амплитудной телеграфии образуется последовательность высокочастотных радиоимпульсов, амплитуда которых постоянна в течение длительности модулирующих импульсов τ и, и равна нулю все остальное время (рис.1.16,б).

    При частотной телеграфии образуется высокочастотный сигнал с постоянной амплитудой, и частотой, принимающей два возможных значения (рис.1.16,в).

    При фазовой телеграфии образуется высокочастотный сигнал с постоянной амплитудой и частотой, фаза которого изменяется на 180° по закону модулирующего сигнала (рис.1.16,г).


    1 Классификация видов модуляции, основные характеристики радиосигналов.

    Для осуществления радиосвязи необходимо каким-то образом изменять один из параметров радиочастотного колебания, называемого несущим, в соответствии с передаваемым низкочастотным сигналом. Это достигается с помощью модуляции радиочастотного колебания.

    Известно, что гармоническое колебание

    характеризуется тремя, независимыми параметрами: амплитудой, частотой и фазой.

    Соответственно различают три основных вида модуляции:

    Амплитудная,

    Частотная,

    Фазовая.

    Амплитудной модуляцией (АМ) называют такой вид воздействия на несущее колебание, в результате которого его амплитуда изменяется по закону передаваемого (модулирующего) сигнала.

    Считаем, что модулирующий сигнал имеет вид гармонического колебания с частотой W

    много меньшей частоты несущего колебания w.

    В результате модуляции амплитуда напряжения несущего колебания должна изменяться пропорционально напряжению модулирующего сигнала uW (рис. 1):

    UAM = U + kUWcosWt = U + DUcosWt, (1)

    где U - амплитуда напряжения несущего радиочастотного колебания;

    DU=kUW - приращение амплитуды.

    Уравнение амплитудно-модулированных колебаний, в этом случае, принимает вид

    UAM = UAM coswt = (U + DUcosWt) coswt = U (1+cosWt) coswt. (2)

    По такому же закону будет изменяться и ток iAM при модуляции.

    Величина, характеризующая отношение величины изменения амплитуды колебаний DU к их амплитуде в отсутствии модуляции U, называется коэффициентом (глубиной) модуляции

    Из этого следует, что максимальная амплитуда колебаний Umax = U + DU = U (1+m) и минимальная амплитуда Umin= U (1-m).

    Как нетрудно видеть из уравнения (2), в простейшем случае модулированные колебания представляют собой сумму трех колебаний

    UAM = U(1+ mcosWt)coswt = Ucoswt U/2+ cos(w - W)t U/2+ cos(w + W)t . (4)

    Первое слагаемое – колебания передатчика в отсутствии модуляции (режим молчания). Вторые – колебания боковых частот.

    Если модуляция осуществляется сложным низкочастотным сигналом со спектром от Fmin до Fmax , то спектр полученного АМ сигнала имеет вид, изображенный на рис. Занимаемая АМ - сигналом полоса частот Δfс не зависит от m и равна

    Δfс = 2Fmax . (5)

    Возникновение колебаний боковых частот при модуляции приводит к необходимости расширения полосы пропускания контуров передатчика (и, соответственно, приемника). Она должна быть

    где Q - добротность контуров,

    Df - абсолютная расстройка,

    Dfк - полоса пропускания контура.

    На рис. спектральные составляющие, соответствующие нижним модулирующим частотам (Fmin) имеют меньшие ординаты.

    Это объясняется следующим обстоятельством. У большинства видов сигналов (например, речевых), поступающих на вход передатчика, амплитуды высокочастотных составляющих спектра малы по сравнению с составляющими низких и средних частот. Что касается шумов на входе детектора в приемнике, то их спектральная плотность постоянна в пределах полосы пропускания

    приемника. В результате коэффициент модуляции и отношение сигнал-шум на входе детектора приемника для высоких частот модулирующего сигнала оказываются малыми. Для увеличения отношения сигнал-шум высокочастотные составляющие модулирующего сигнала при передаче подчеркиваются путем усиления высокочастотных составляющих в большее число раз по сравнению с составляющими низких и средних частот, а при приеме до или после детектора во столько же раз ослабляются. Ослабление высокочастотных составляющих до детектора происходит практически всегда в высокочастотных резонансных цепях приемника. Необходимо отметить, что искусственное подчеркивание верхних модулирующих частот допустимо, пока оно не приводит к перемодуляции (m > 1).

    Радиосигналами называют электромагнитные волны или электрические высокочастотные колебания, которые заключают в себе передаваемое сообщение. Для образования сигнала параметры высокочастотных колебаний изменяются (модулируются) с помощью управляющих сигналов, которые представляют собой напряжение, изменяющееся по заданному закону. В качестве модулируемых обычно используются гармонические высокочастотные колебания:

    где w 0 =2πf 0 – высокая несущая частота;

    U 0 – амплитуда высокочастотных колебаний.

    К наиболее простым и часто используемым управляющим сигналам относятся гармоническое колебание

    где Ω – низкая частота, много меньшая w 0 ; ψ – начальная фаза; U m – амплитуда, а также прямоугольные импульсные сигналы, которые характеризуются тем, что значение напряжения U упр (t )=U в течение интервалов времени τ и, называемых длительностью импульсов, и равно нулю в течение интервала между импульсами (рис.1.13). Величина T и называется периодом повторения импульсов; F и =1/T и – частота их повторения. Отношение периода повторения импульсов T и к длительности τ и называется скважностью Q импульсного процесса: Q =T и /τ и.

    U упр (t )
    T и
    τ и
    U
    t

    Рис.1.13. Последовательность прямоугольных импульсов

    В зависимости от того, какой параметр высокочастотного колебания изменяется (модулируется) с помощью управляющего сигнала, различают амплитудную, частотную и фазовую модуляцию.

    При амплитудной модуляции (АМ) высокочастотных колебаний низкочастотным синусоидальным напряжением частотой Ω мод образуется сигнал, амплитуда которого изменяется во времени (рис.1.14):

    Параметр m =U m /U 0 называют коэффициентом амплитудной модуляции. Его значения заключены в интервале от единицы до нуля: 1≥m≥0. Коэффициент модуляции, выраженный в процентах (т.е. m ×100%), называется глубиной амплитудной модуляции.

    t
    U АМ (t )

    Рис. 1.14. Амплитудно-модулированный радиосигнал

    При фазовой модуляции (ФМ) высокочастотного колебания синусоидальным напряжением амплитуда сигнала остается постоянной, а его фаза получает дополнительное приращение Δy под воздействием модулирующего напряжения: Δy=k ФМ U м sinW мод t , где k ФМ – коэффициент пропорциональности. Высокочастотный сигнал с фазовой модуляцией по синусоидальному закону имеет вид

    При частотной модуляции (ЧМ) управляющий сигнал изменяет частоту высокочастотных колебаний. Если модулирующее напряжение изменяется по синусоидальному закону, то мгновенное значение частоты модулированных колебаний w=w 0 + k ЧМ U м sinW мод t , где k ЧМ – коэффициент пропорциональности. Наибольшее изменение частоты w по отношению к ее среднему значению w 0 , равное Δw М = k ЧМ U м, называется девиацией частоты. Частотно-модулированный сигнал может быть записан следующим образом:

    Величина, равная отношению девиации частоты к частоте модуляции (Δw м /W мод = m ЧМ), называется коэффициентом частотной модуляции.

    На рис.1.14 изображены высокочастотные сигналы при АМ, ФМ и ЧМ. Во всех трех случаях используется одинаковое модулирующее напряжение U мод, изменяющееся по симметричному пилообразному закону U мод (t )= k мод t , где k мод >0 на отрезке времени 0t 1 и k мод <0 на отрезке t 1 t 2 (рис.1.15,а).

    При АМ частота сигнала остается постоянной (w 0), а амплитуда изменяется по закону модулирующего напряжения U АМ (t ) = U 0 k мод t (рис.1.15,б).

    Частотномодулированный сигнал (рис.1.15,в) характеризуется постоянством амплитуды и плавным изменением частоты: w(t ) = w 0 +k ЧМ t . На отрезке времени от t =0 до t 1 частота колебаний увеличивается от значения w 0 до значения w 0 +k ЧМ t 1 , а на отрезке от t 1 до t 2 частота уменьшается опять до значения w 0 .

    Фазомодулированный сигнал (рис.1.15,г) имеет постоянную амплитуду и скачкообразное изменение частоты. Поясним это аналитически. При ФМ под воздействием модулирующего напряжения

    t
    U АМ (t )
    t
    U ЧМ (t )
    а)
    б)
    t
    U мод (t )
    t 1
    t 2
    w 0
    t
    U фМ (t )
    г)
    w 1
    w 2
    в)

    Рис.1.15. Сравнительный вид модулированных колебаний при АМ, ЧМ и ФМ:
    а – модулирующее напряжение; б – амплитудно-модулированный сигнал;
    в – частотно-модулированный сигнал; г – фазомодулированный сигнал

    фаза сигнала получает дополнительное приращение Δy=k ФМ t , следовательно высокочастотный сигнал с фазовой модуляцией по пилообразному закону имеет вид

    Таким образом, на отрезке 0t 1 частота равна w 1 >w 0 , а на отрезке t 1 t 2 она равна w 2

    При передаче последовательности импульсов, например, двоичного цифрового кода (рис.1.16,а), также может использоваться АМ, ЧМ и ФМ. Такой вид модуляции называется манипуляцией или телеграфией (АТ, ЧТ и ФТ).

    t
    U АТ (t )
    t
    U ЧТ (t )
    а)
    б)
    τ и
    w 0
    t
    U мод (t )
    w 2
    w 1
    в)
    г)
    t
    U ФТ (t )
    w 0

    Рис.1.16. Сравнительный вид манипулированных колебании при АТ, ЧТ и ФТ

    При амплитудной телеграфии образуется последовательность высокочастотных радиоимпульсов, амплитуда которых постоянна в течение длительности модулирующих импульсов τ и, и равна нулю все остальное время (рис.1.16,б).

    При частотной телеграфии образуется высокочастотный сигнал с постоянной амплитудой, и частотой, принимающей два возможных значения (рис.1.16,в).

    При фазовой телеграфии образуется высокочастотный сигнал с постоянной амплитудой и частотой, фаза которого изменяется на 180° по закону модулирующего сигнала (рис.1.16,г).