Бинарный код перевод. Бинарные коды. Преобразование дробных двоичных чисел в десятичные


Все символы и буквы могут быть закодированы при помощи восьми двоичных бит. Наиболее распространенными таблицами представления букв в двоичном коде являются ASCII и ANSI, их можно использовать для записи текстов в микропроцессорах. В таблицах ASCII и ANSI первые 128 символов совпадают. В этой части таблицы содержатся коды цифр, знаков препинания, латинские буквы верхнего и нижнего регистров и управляющие символы. Национальные расширения символьных таблиц и символы псевдографики содержатся в последних 128 кодах этих таблиц, поэтому русские тексты в операционных системах DOS и WINDOWS не совпадают.

При первом знакомстве с компьютерами и микропроцессорами может возникнуть вопрос — "как преобразовать текст в двоичный код?" Однако это преобразование является наиболее простым действием! Для этого нужно воспользоваться любым текстовым редактором. В том числе подойдет и простейшая программа notepad, входящая в состав операционной системы Windows. Подобные же редакторы присутствуют во всех средах программирования для языков, таких как СИ, Паскаль или Ява. Следует отметить, что наиболее распространенный текстовый редактор Word для простого преобразования текста в двоичный код не подходит. Этот тестовый редактор вводит огромное количество дополнительной информации, такой как цвет букв, наклон, подчеркивание, язык, на котором написана конкретная фраза, шрифт.

Следует отметить, что на самом деле комбинация нулей и единиц, при помощи которых кодируется текстовая информация двоичным кодом не является, т.к. биты в этом коде не подчиняются законам . Однако в Интернете поисковая фраза "представление букв в двоичном коде" является самой распространенной. В таблице 1 приведено соответствие двоичных кодов буквам латинского алфавита. Для краткости записи в этой таблице последовательность нулей и единиц представлена в десятичном и шестнадцатеричном кодах.

Таблица 1 Таблица представления латинских букв в двоичном коде (ASCII)

Десятичный код Шестнадцатеричный код Отображаемый символ Значение
0 00 NUL
1 01 (слово управления дисплеем)
2 02 (Первое передаваемое слово)
3 03 ETX (Последнее слово передачи)
4 04 EOT (конец передачи)
5 05 ENQ (инициализация)
6 06 ACK (подтверждение приема)
7 07 BEL
8 08 BS
9 09 HT (горизонтальная табуляция
10 0A LF (перевод строки)
11 0B VT (вертикальная табуляция)
12 FF (следующая страница)
13 0D CR (возврат каретки)
14 0E SO (двойная ширина)
15 0F SI (уплотненная печать)
16 10 DLE
17 11 DC1
18 12 DC2 (отмена уплотненной печати)
19 13 DC3 (готовность)
20 14 DC4 (отмена двойной ширины)
21 15 § NAC (неподтверждение приема)
22 16 SYN
23 17 ETB
24 18 CAN
25 19 EM
26 1A SUB
27 1B ESC (начало управл. послед.)
28 1C FS
29 1D GS
30 1E RS
31 1F US
32 20 Пробел
33 21 ! Восклицательный знак
34 22 « Угловая скобка
35 23 # Знак номера
36 24 $ Знак денежной единицы (доллар)
37 25 % Знак процента
38 26 & Амперсанд
39 27 " Апостроф
40 28 ( Открывающая скобка
41 29 ) Закрывающая скобка
42 2A * Звездочка
43 2B + Знак плюс
44 2C , Запятая
45 2D - Знак минус
46 2E . Точка
47 2F / Дробная черта
48 30 0 Цифра ноль
49 31 1 Цифра один
50 32 2 Цифра два
51 33 3 Цифра три
52 34 4 Цифра четыре
53 35 5 Цифра пять
54 36 6 Цифра шесть
55 37 7 Цифра семь
56 38 8 Цифра восемь
57 39 9 Цифра девять
58 3A : Двоеточие
59 3B ; Точка с запятой
60 3C < Знак меньше
61 3D = Знак равно
62 3E > Знак больше
63 3F ? Знак вопрос
64 40 @ Коммерческое эт
65 41 A Прописная латинская буква А
66 42 B Прописная латинская буква B
67 43 C Прописная латинская буква C
68 44 D Прописная латинская буква D
69 45 E Прописная латинская буква E
70 46 F Прописная латинская буква F
71 47 G Прописная латинская буква G
72 48 H Прописная латинская буква H
73 49 I Прописная латинская буква I
74 4A J Прописная латинская буква J
75 4B K Прописная латинская буква K
76 4C L Прописная латинская буква L
77 4D M Прописная латинская буква
78 4E N Прописная латинская буква N
79 4F O Прописная латинская буква O
80 50 P Прописная латинская буква P
81 51 Q Прописная латинская буква
82 52 R Прописная латинская буква R
83 53 S Прописная латинская буква S
84 54 T Прописная латинская буква T
85 55 U Прописная латинская буква U
86 56 V Прописная латинская буква V
87 57 W Прописная латинская буква W
88 58 X Прописная латинская буква X
89 59 Y Прописная латинская буква Y
90 5A Z Прописная латинская буква Z
91 5B [ Открывающая квадратная скобка
92 5C \ Обратная черта
93 5D ] Закрывающая квадратная скобка
94 5E ^ "Крышечка"
95 5 _ Символ подчеркивания
96 60 ` Апостроф
97 61 a Строчная латинская буква a
98 62 b Строчная латинская буква b
99 63 c Строчная латинская буква c
100 64 d Строчная латинская буква d
101 65 e Строчная латинская буква e
102 66 f Строчная латинская буква f
103 67 g Строчная латинская буква g
104 68 h Строчная латинская буква h
105 69 i Строчная латинская буква i
106 6A j Строчная латинская буква j
107 6B k Строчная латинская буква k
108 6C l Строчная латинская буква l
109 6D m Строчная латинская буква m
110 6E n Строчная латинская буква n
111 6F o Строчная латинская буква o
112 70 p Строчная латинская буква p
113 71 q Строчная латинская буква q
114 72 r Строчная латинская буква r
115 73 s Строчная латинская буква s
116 74 t Строчная латинская буква t
117 75 u Строчная латинская буква u
118 76 v Строчная латинская буква v
119 77 w Строчная латинская буква w
120 78 x Строчная латинская буква x
121 79 y Строчная латинская буква y
122 7A z Строчная латинская буква z
123 7B { Открывающая фигурная скобка
124 | Вертикальная черта
125 7D } Закрывающая фигурная скобка
126 7E ~ Тильда
127 7F

В классическом варианте таблицы символов ASCII нет русских букв и она состоит из 7 бит. Однако в дальнейшем эта таблица была расширена до 8 бит и в старших 128 строках появились русские буквы в двоичном коде и символы псевдографики. В общем случае во второй части размещены национальные алфавиты разных стран и русские буквы там просто один из возможных наборов (855) там может быть французская (863), немецкая (1141) или греческая (737) таблица. В таблице 2 приведен пример представления русских букв в двоичном коде.

Таблица 2. Таблица представления русских букв в двоичном коде (ASCII)

Десятичный код Шестнадцатеричный код Отображаемый символ Значение
128 80 А Прописная русская буква А
129 81 Б Прописная русская буква Б
130 82 В Прописная русская буква В
131 83 Г Прописная русская буква Г
132 84 Д Прописная русская буква Д
133 85 Е Прописная русская буква Е
134 86 Ж Прописная русская буква Ж
135 87 З Прописная русская буква З
136 88 И Прописная русская буква И
137 89 Й Прописная русская буква Й
138 8A К Прописная русская буква К
139 8B Л Прописная русская буква Л
140 8C М Прописная русская буква М
141 8D Н Прописная русская буква Н
142 8E О Прописная русская буква О
143 8F П Прописная русская буква П
144 90 Р Прописная русская буква Р
145 91 С Прописная русская буква С
146 92 Т Прописная русская буква Т
147 93 У Прописная русская буква У
148 94 Ф Прописная русская буква Ф
149 95 Х Прописная русская буква Х
150 96 Ц Прописная русская буква Ц
151 97 Ч Прописная русская буква Ч
152 98 Ш Прописная русская буква Ш
153 99 Щ Прописная русская буква Щ
154 9A Ъ Прописная русская буква Ъ
155 9B Ы Прописная русская буква Ы
156 9C Ь Прописная русская буква Ь
157 9D Э Прописная русская буква Э
158 9E Ю Прописная русская буква Ю
159 9F Я Прописная русская буква Я
160 A0 а Строчная русская буква а
161 A1 б Строчная русская буква б
162 A2 в Строчная русская буква в
163 A3 г Строчная русская буква г
164 A4 д Строчная русская буква д
165 A5 е Строчная русская буква е
166 A6 ж Строчная русская буква ж
167 A7 з Строчная русская буква з
168 A8 и Строчная русская буква и
169 A9 й Строчная русская буква й
170 AA к Строчная русская буква к
171 AB л Строчная русская буква л
172 AC м Строчная русская буква м
173 AD н Строчная русская буква н
174 AE о Строчная русская буква о
175 AF п Строчная русская буква п
176 B0
177 B1
178 B2
179 B3 Символ псевдографики
180 B4 Символ псевдографики
181 B5 Символ псевдографики
182 B6 Символ псевдографики
183 B7 Символ псевдографики
184 B8 Символ псевдографики
185 B9 Символ псевдографики
186 BA Символ псевдографики
187 BB Символ псевдографики
188 BC Символ псевдографики
189 BD Символ псевдографики
190 BE Символ псевдографики
191 BF Символ псевдографики
192 C0 Символ псевдографики
193 C1 Символ псевдографики
194 C2 Символ псевдографики
195 C3 Символ псевдографики
196 C4 Символ псевдографики
197 C5 Символ псевдографики
198 C6 Символ псевдографики
199 C7 Символ псевдографики
200 C8 Символ псевдографики
201 C9 Символ псевдографики
202 CA Символ псевдографики
203 CB Символ псевдографики
204 CC Символ псевдографики
205 CD Символ псевдографики
206 CE Символ псевдографики
207 CF Символ псевдографики
208 D0 Символ псевдографики
209 D1 Символ псевдографики
210 D2 Символ псевдографики
211 D3 Символ псевдографики
212 D4 Символ псевдографики
213 D5 Символ псевдографики
214 D6 Символ псевдографики
215 D7 Символ псевдографики
216 D8 Символ псевдографики
217 D9 Символ псевдографики
218 DA Символ псевдографики
219 DB
220 DC
221 DD
222 DE
223 DF
224 E0 р Строчная русская буква р
225 E1 с Строчная русская буква с
226 E2 т Строчная русская буква т
227 E3 у Строчная русская буква у
228 E4 ф Строчная русская буква ф
229 E5 х Строчная русская буква х
230 E6 ц Строчная русская буква ц
231 E7 ч Строчная русская буква ч
232 E8 ш Строчная русская буква ш
233 E9 щ Строчная русская буква щ
234 EA ъ Строчная русская буква ъ
235 EB ы Строчная русская буква ы
236 EC ь Строчная русская буква ь
237 ED э Строчная русская буква э
238 EE ю Строчная русская буква ю
239 EF я Строчная русская буква я
240 F0 Ё Прописная русская буква Ё
241 F1 ё Строчная русская буква ё
242 F2 Є
243 F3 є
244 F4 Ї
245 F5 Ї
246 F6 Ў
247 F7 ў
248 F8 ° Знак градуса
249 F9 Знак умножения (точка)
250 FA ·
251 FB Радикал (взятие корня)
252 FC Знак номера
253 FD ¤ Знак денежной единицы (рубль)
254 FE
255 FF

При записи текстов кроме двоичных кодов, непосредственно отображающих буквы, применяются коды, обозначающие переход на новую строку и возврат курсора (возврат каретки) на нулевую позицию строки. Эти символы обычно применяются вместе. Их двоичные коды соответствуют десятичным числам — 10 (0A) и 13 (0D). В качестве примера ниже приведен участок текста данной страницы (дамп памяти). На этом участке записан ее первый абзац. Для отображения информации в дампе памяти применен следующий формат:

  • в первой колонке записан двоичный адрес первого байта строки
  • в следующи шестнадцати колонках записаны байты, содержащиеся в текстовом файле. Для более удобного определения номера байта после восьмой колонки проведена вертикальная линия. Байты, для краткости записи, представлены в шестнадцатеричном коде.
  • в последней колонке эти же байты представлены в виде отображаемых буквенных символов
00000000: 82 E1 A5 20 E1 A8 AC A2 ¦ AE AB EB 20 A8 20 A1 E3 Все символы и бу 00000010: AA A2 EB 20 AC AE A3 E3 ¦ E2 20 A1 EB E2 EC 20 A7 квы могут быть з 00000020: A0 AA AE A4 A8 E0 AE A2 ¦ A0 AD EB 20 AF E0 A8 20 акодированы при 00000030: AF AE AC AE E9 A8 20 A2 ¦ AE E1 EC AC A8 20 A4 A2 помощи восьми дв 00000040: AE A8 E7 AD EB E5 20 E1 ¦ A8 AC A2 AE AB AE A2 2E оичных символов. 00000050: 0D 0A 8D A0 A8 A1 AE AB ¦ A5 A5 20 E0 A0 E1 AF E0 ♪◙Наиболее распр 00000060: AE E1 E2 E0 A0 AD A5 AD ¦ AD EB AC A8 20 E2 A0 A1 остраненными таб 00000070: AB A8 E6 A0 AC A8 20 EF ¦ A2 AB EF EE E2 E1 EF 20 лицами являются 00000080: E2 A0 A1 AB A8 E6 EB 20 ¦ 41 53 43 49 49 20 E1 20 таблицы ASCII с 00000090: AD A0 E6 A8 AE AD A0 AB ¦ EC AD EB AC A8 0D 0A E0 национальными♪◙р 000000A0: A0 E1 E8 A8 E0 A5 AD A8 ¦ EF AC A8 2C 20 AF E0 A8 асширениями, при 000000B0: AC A5 AD EF EE E9 A8 A5 ¦ E1 EF 20 A2 20 44 4F 53 меняющиеся в DOS 000000C0: 20 28 A8 20 AA AE E2 AE ¦ E0 EB A5 20 AC AE A6 AD (и которые можн 000000D0: AE 20 A8 E1 AF AE AB EC ¦ A7 AE A2 A0 E2 EC 20 A4 о использовать д 000000E0: AB EF 20 A7 A0 AF A8 E1 ¦ A8 0D 0A E2 A5 AA E1 E2 ля записи♪◙текст 000000F0: AE A2 20 A2 20 AC A8 AA ¦ E0 AE AF E0 AE E6 A5 E1 ов в микропроцес 00000100: E1 AE E0 A0 E5 29 2C 20 ¦ A8 20 E2 A0 A1 AB A8 E6 сорах),и таблиц 00000110: EB 20 41 4E 53 49 2C 20 ¦ AF E0 A8 AC A5 AD EF EE ы ANSI, применяю 00000120: E9 A8 A5 E1 EF 20 A2 20 ¦ 57 49 4E 44 4F 57 53 2E щиеся в WINDOWS. 00000130: 20 82 20 E2 A0 A1 AB A8 ¦ E6 A0 E5 0D 0A 41 53 43 В таблицах♪◙ASC 00000140: 49 49 20 A8 20 41 4E 53 ¦ 49 20 AF A5 E0 A2 EB A5 II и ANSI первые 00000150: 20 31 32 38 20 E1 A8 AC ¦ A2 AE AB AE A2 20 E1 AE 128 символов со 00000160: A2 AF A0 A4 A0 EE E2 2E ¦ 20 82 20 ED E2 AE A9 20 впадают. В этой 00000170: E7 A0 E1 E2 A8 20 E2 A0 ¦ A1 AB A8 E6 EB 20 E1 AE части таблицы со 00000180: A4 A5 E0 A6 A0 E2 E1 EF ¦ 0D 0A E1 A8 AC A2 AE AB держатся♪◙символ 00000190: EB 20 E6 A8 E4 E0 2C 20 ¦ A7 AD A0 AA AE A2 20 AF ы цифр, знаков п 000001A0: E0 A5 AF A8 AD A0 AD A8 ¦ EF 2C 20 AB A0 E2 A8 AD репинания, латин 000001B0: E1 AA A8 A5 20 A1 E3 AA ¦ A2 EB 20 A2 A5 E0 E5 AD ские буквы верхн 000001C0: A5 A3 AE 20 A8 20 AD A8 ¦ A6 AD A5 A3 AE 20 E0 A5 его инижнего ре 000001D0: A3 A8 E1 E2 E0 AE A2 20 ¦ A8 0D 0A E3 AF E0 A0 A2 гистров и♪◙управ 000001E0: AB EF EE E9 A8 A5 20 E1 ¦ A8 AC A2 AE AB EB 2E 20 ляющие символы. 000001F0: 8D A0 E6 A8 AE AD A0 AB ¦ EC AD EB A5 20 E0 A0 E1 Национальные рас 00000200: E8 A8 E0 A5 AD A8 EF 20 ¦ E1 A8 AC A2 AE AB EC AD ширения символьн 00000210: EB E5 20 E2 A0 A1 AB A8 ¦ E6 20 A8 20 E1 A8 AC A2 ыхтаблиц и симв 00000220: AE AB EB 0D 0A AF E1 A5 ¦ A2 A4 AE A3 E0 A0 E4 A8 олы♪◙псевдографи 00000230: AA A8 20 E1 AE A4 A5 E0 ¦ A6 A0 E2 E1 EF 20 A2 20 ки содержатся в 00000240: AF AE E1 AB A5 A4 AD A8 ¦ E5 20 31 32 38 20 AA AE последних 128 ко 00000250: A4 A0 E5 20 ED E2 A8 E5 ¦ 20 E2 A0 A1 AB A8 E6 2C дах этих таблиц, 00000260: 20 AF AE ED E2 AE AC E3 ¦ 20 E0 E3 E1 E1 AA A8 A5 поэтому русские 00000270: 0D 0A E2 A5 AA E1 E2 EB ¦ 20 A2 20 AE AF A5 E0 A0 ♪◙тексты в опера 00000280: E6 A8 AE AD AD EB E5 20 ¦ E1 A8 E1 E2 A5 AC A0 E5 ционных системах 00000290: 20 44 4F 53 20 A8 20 57 ¦ 49 4E 44 4F 57 53 20 AD DOS и WINDOWS н 000002A0: A5 20 E1 AE A2 AF A0 A4 ¦ A0 EE E2 2E 0D 0A е совпадают.♪◙

В приведенном примере видно, что первая строка текста занимает 80 байт. Первый байт 82 соответствует букве "В". Второй байт E1 соответствует букве "с". Третий байт A5 соответствует букве "е". Следующий байт 20 отображает пустой промежуток между словами (пробел) " ". 81 и 82 байты содержат символы возврата каретки и перевода строки 0D 0A. Эти символы мы находим по двоичному адресу 00000050: Следующая строка исходного текста не кратна 16 (ее длина равна 76 буквам), поэтому для того, чтобы найти ее конец потребуется сначала найти строку 000000E0: и от нее отсчитать девять колонок. Там снова записаны байты возврата каретки и перевода строки 0D 0A. Остальной текст анализируется точно таким же образом.

Дата последнего обновления файла 04.12.2018

Литература:

Вместе со статьей "Запись текстов двоичным кодом" читают:

Представление двоичных чисел в памяти компьютера или микроконтроллера
http://сайт/proc/IntCod.php

Иногда бывает удобно хранить числа в памяти процессора в десятичном виде
http://сайт/proc/DecCod.php

Стандартные форматы чисел с плавающей запятой для компьютеров и микроконтроллеров
http://сайт/proc/float/

В настоящее время и в технике и в быту широко используются как позиционные, так и непозиционные системы счисления.
.php

Компьютер обрабатывает большое количество информации. Аудиофайлы, картинки, тексты - все это необходимо воспроизвести или вывести на экран. Почему двоичное кодирование является универсальным методом программирования информации любого технического оборудования?

Чем отличается кодирование от шифрования?

Зачастую люди отождествляют понятия "кодирование" и "шифрование", когда на самом деле они имеют разный смысл. Так, шифрованием называют процесс преобразования информации с целью ее сокрытия. Расшифровать зачастую может сам человек, который изменил текст, или специально обученные люди. Кодирование же применяется для обработки информации и упрощения работы с ней. Обычно используется общая таблица кодировки, знакомая всем. Она же встроена в компьютер.

Принцип двоичного кодирования

Двоичное кодирование основывается на использовании всего лишь двух символов - 0 и 1 - для обработки информации, используемой различными устройствами. Эти знаки назвали двоичными цифрами, на английском - binary digit, или bit. Каждый из символов двоичного кода занимает память компьютера в 1 бит. Почему двоичное кодирование является универсальным методом обработки информации? Дело в том, что компьютеру легче обрабатывать меньшее количество символов. От этого напрямую зависит и продуктивность работы ПК: чем меньше функциональных задач нужно выполнить устройству, тем выше скорость и качество работы.

Принцип двоичного кодирования встречается не только в программировании. С помощью чередования глухих и звонких ударов барабана жители Полинезии передавали информацию друг другу. Сходный принцип применяется и в где для передачи сообщения используются длинные и короткие звуки. «Телеграфная азбука» используется и сегодня.

Где используется двоичное кодирование?

Двоичное кодирование информации в компьютере используется повсеместно. Каждый файл, будь то музыка или текст, должен быть запрограммирован, чтобы в последующем он мог быть легко обработан и прочитан. Система двоичного кодирования полезна для работы с символами и числами, аудиофайлами, графикой.

Двоичное кодирование чисел

Сейчас в компьютерах числа представлены в закодированном виде, непонятном для обычного человека. Использование арабских цифр так, как мы себе представляем, для техники нерационально. Причиной тому является необходимость присваивать каждому числу свою неповторимый символ, что сделать порой невозможно.

Существуют две системы счисления: позиционная и непозиционная. Непозиционная система основана на использовании латинских букв и знакома нам в виде греческих цифр. Такой способ записи достаточно сложен для понимания, поэтому от него отказались.

Позиционная система счисления используется и сегодня. Сюда входит двоичное, десятичное, восьмеричное и даже шестнадцатеричное кодирование информации.

Десятичной системой кодирования мы пользуемся в быту. Это привычные для нас которые понятны каждому человеку. Двоичное кодирование чисел отличается использованием только нуля и единицы.

Целые числа переводятся в двоичную систему кодирования путем деления их на 2. Полученные частные также поэтапно делятся на 2, пока не получится в итоге 0 или 1. Например, число 123 10 в двоичной системе может быть представлено в виде 1111011 2 . А число 20 10 будет выглядеть как 10100 2 .

Индексы 10 и 2 обозначаются, соответственно, десятичную и двоичную систему кодирования чисел. Символ двоичного кодирования используется для упрощения работы со значениями, представленными в разных системах счисления.

Методы программирования десятичных чисел основаны на “плавающей запятой”. Для того чтобы правильно перевести значение из десятичной в двоичную систему кодирования, используют формулу N = M х qp. М - это мантисса (выражение числа без какого-либо порядка), p - это порядок значения N, а q - основание системы кодирование (в нашем случае 2).

Не все числа являются положительными. Для того чтобы различить положительные и отрицательные числа, компьютер оставляет место в 1 бит для кодирования знака. Здесь ноль представляет знак плюс, а единица - минус.

Использование такой системы счисления упрощает для компьютера работу с числами. Вот почему двоичное кодирование является универсальным при вычислительных процессах.

Двоичное кодирование текстовой информации

Каждый символ алфавита кодируется своим набором нулей и единиц. Текст состоит из разных символов: букв (прописных и строчных), арифметических знаков и других различных значений. Кодирование текстовой информации требует использования 8 последовательных двоичных значений от 00000000 до 11111111. Таким образом можно преобразовать 256 различных символов.

Чтобы не было путаницы в кодировании текста, используются специальных таблицы значений для каждого символа. В них присутствует латинский алфавит, арифметические знаки и знаки особого назначения (например, €, ¥, и другие). Символы промежутка 128-255 кодируют национальный алфавит страны.

Для кодирования 1 символа требуется 8 бит памяти. Для упрощения подстчетов 8 бит приравниваются к 1 байту, поэтому общее место на диске для текстовой информации измеряется в байтах.

Большинство персональных компьютеров оснащены стандартной таблицей (American Standard Code for Information Interchange). Также используются другие таблицы, в которых система кодирования текстовой информации отличается. К примеру, первая известная кодировка символов называется КОИ-8 (код обмена информацией 8-битный), и работает она на компьютерах с ОС UNIX. Также широко встречается таблица кодов СР1251, которая была создана для операционной системы Windows.

Двоичное кодирование звуков

Еще одна причина, почему двоичное кодирование является универсальным методом программирования информации, - это его простота при работе с аудиофайлами. Любая музыка представляет собой звуковые волны разной амплитуды и частоты колебания. От этих параметров зависит громкость звука и его высота тона.

Чтобы запрограммировать звуковую волну, компьютер делит ее условно на несколько частей, или «выборок». Число таких выборок может быть большим, поэтому существует 65536 различных комбинаций нулей и единиц. Соответственно, современные компьютеры оснащены 16-битными звуковыми картами, что означает использование 16 двоичных цифр для кодирования одной выборки звуковой волны.

Чтобы воспроизвести аудиофайл, компьютер обрабатывает запрограммированные последовательности двоичного кода и соединяет их в одну непрерывную волну.

Кодирование графики

Графическая информация может быть представлена в виде рисунков, схем, картинок или слайдов в PowerPoint. Любая картинка состоит из мелких точек - пикселей, которые могут быть окрашены в разный цвет. Цвет каждого пикселя кодируется и сохраняется, и в итоге мы получаем полноценное изображение.

Если картинка черно-белая, код каждого пикселя может быть либо единицей, либо нулем. Если используется 4 цвета, то код каждого из них состоит из двух цифр: 00, 01, 10 или 11. По этому принципу различают качество обработки любого изображения. Увеличение или уменьшение яркости также влияет на количество используемых цветов. В лучшем случае компьютер различает около 16 777 216 оттенков.

Заключение

Существуют разные информации, среди которых двоичное кодирование является наиболее эффективным. Всего лишь с помощью двух символов - 1 и 0 - компьютер легко прочитывает большинство файлов. При этом скорость обработки намного выше, нежели использовалась бы, например, десятичная система программирования. Простота этого метода делает его незаменимым для любой техники. Вот почему двоичное кодирование является универсальным среди своих аналогов.

Бинарный код представляет собой текст, инструкции процессора компьютера или другие данные с использованием любой двухсимвольной системы. Чаще всего это система 0 и 1. назначает шаблон бинарных цифр (бит) каждому символу и инструкции. Например, бинарная строка из восьми бит может представлять любое из 256 возможных значений и поэтому может генерировать множество различных элементов. Отзывы о бинарном коде мирового профессионального сообщества программистов свидетельствуют о том, что это основа профессии и главный закон функционирования вычислительных систем и электронных устройств.

Расшифровка бинарного кода

В вычислениях и телекоммуникациях бинарные коды используются для различных методов кодирования символов данных в битовые строки. Эти методы могут использовать строки фиксированной или переменной ширины. Для перевода в бинарный код существует множество наборов символов и кодировок. В коде с фиксированной шириной каждая буква, цифра или другой символ представляется битовой строкой той же длины. Эта битовая строка, интерпретируемая как бинарное число, обычно отображается в кодовых таблицах в восьмеричной, десятичной или шестнадцатеричной нотации.

Расшифровка бинарного кода: битовая строка, интерпретируемая как бинарное число, может быть переведена в десятичное число. Например, нижний регистр буквы a, если он представлен битовой строкой 01100001 (как и в стандартном коде ASCII), также может быть представлен как десятичное число 97. Перевод бинарного кода в текст представляет собой ту же процедуру, только в обратном порядке.

Как это работает

Из чего состоит бинарный код? Код, используемый в цифровых компьютерах, основан на в которой есть только два возможных состояния: вкл. и выкл., обычно обозначаемые нулем и единицей. Если в десятичной системе, которая использует 10 цифр, каждая позиция кратна 10 (100, 1000 и т. д.), то в двоичной системе каждое цифровое положение кратно 2 (4, 8, 16 и т. д.). Сигнал двоичного кода представляет собой серию электрических импульсов, которые представляют числа, символы и операции, которые необходимо выполнить.

Устройство, называемое часами, посылает регулярные импульсы, а такие компоненты, как транзисторы, включаются (1) или выключаются (0), чтобы передавать или блокировать импульсы. В двоичном коде каждое десятичное число (0-9) представлено набором из четырех двоичных цифр или битов. Четыре основных арифметических операции (сложение, вычитание, умножение и деление) могут быть сведены к комбинациям фундаментальных булевых алгебраических операций над двоичными числами.

Бит в теории связи и информации представляет собой единицу данных, эквивалентную результату выбора между двумя возможными альтернативами в системе двоичных номеров, обычно используемой в цифровых компьютерах.

Отзывы о бинарном коде

Характер кода и данных является базовой частью фундаментального мира ИТ. C этим инструментом работают специалисты мирового ИТ-«закулисья» — программисты, чья специализация скрыта от внимания рядового пользователя. Отзывы о бинарном коде от разработчиков свидетельствуют о том, что эта область требует глубокого изучения математических основ и большой практики в сфере матанализа и программирования.

Бинарный код — это простейшая форма компьютерного кода или данных программирования. Он полностью представлен двоичной системой цифр. Согласно отзывам о бинарном коде, его часто ассоциируется с машинным кодом, так как двоичные наборы могут быть объединены для формирования исходного кода, который интерпретируется компьютером или другим аппаратным обеспечением. Отчасти это верно. использует наборы двоичных цифр для формирования инструкций.

Наряду с самой базовой формой кода двоичный файл также представляет собой наименьший объем данных, который протекает через все сложные комплексные аппаратные и программные системы, обрабатывающие сегодняшние ресурсы и активы данных. Наименьший объем данных называется битом. Текущие строки битов становятся кодом или данными, которые интерпретируются компьютером.

Двоичное число

В математике и цифровой электронике двоичное число — это число, выраженное в системе счисления base-2 или двоичной цифровой системе, которая использует только два символа: 0 (ноль) и 1 (один).

Система чисел base-2 представляет собой позиционную нотацию с радиусом 2. Каждая цифра упоминается как бит. Благодаря своей простой реализации в цифровых электронных схемах с использованием логических правил, двоичная система используется почти всеми современными компьютерами и электронными устройствами.

История

Современная бинарная система чисел как основа для двоичного кода была изобретена Готтфридом Лейбницем в 1679 году и представлена ​​в его статье «Объяснение бинарной арифметики». Бинарные цифры были центральными для теологии Лейбница. Он считал, что двоичные числа символизируют христианскую идею творчества ex nihilo, или творение из ничего. Лейбниц пытался найти систему, которая преобразует вербальные высказывания логики в чисто математические данные.

Бинарные системы, предшествующие Лейбницу, также существовали в древнем мире. Примером может служить китайская бинарная система И Цзин, где текст для предсказания основан на двойственности инь и ян. В Азии и в Африке использовались щелевые барабаны с бинарными тонами для кодирования сообщений. Индийский ученый Пингала (около 5-го века до н.э.) разработал бинарную систему для описания просодии в своем произведении «Чандашутрема».

Жители острова Мангарева во Французской Полинезии использовали гибридную бинарно-десятичную систему до 1450 года. В XI веке ученый и философ Шао Юн разработал метод организации гексаграмм, который соответствует последовательности от 0 до 63, как представлено в бинарном формате, причем инь равен 0, янь — 1. Порядок также является лексикографическим порядком в блоках элементов, выбранных из двухэлементного набора.

Новое время

В 1605 году обсудил систему, в которой буквы алфавита могут быть сведены к последовательностям бинарных цифр, которые затем могут быть закодированы как едва заметные вариации шрифта в любом случайном тексте. Важно отметить, что именно Фрэнсис Бэкон дополнил общую теории бинарного кодирования наблюдением, что этот метод может использован с любыми объектами.

Другой математик и философ по имени Джордж Бул опубликовал в 1847 году статью под названием «Математический анализ логики», в которой описывается алгебраическая система логики, известная сегодня как булева алгебра. Система была основана на бинарном подходе, который состоял из трех основных операций: AND, OR и NOT. Эта система не была введена в эксплуатацию, пока аспирант из Массачусетского технологического института по имени Клод Шеннон не заметил, что булева алгебра, которую он изучил, была похожа на электрическую цепь.

Шеннон написал диссертацию в 1937 году, в которой были сделаны важные выводы. Тезис Шеннона стал отправной точкой для использования бинарного кода в практических приложениях, таких как компьютеры и электрические схемы.

Другие формы двоичного кода

Битовая строка не является единственным типом двоичного кода. Двоичная система в целом — это любая система, которая допускает только два варианта, таких как переключатель в электронной системе или простой истинный или ложный тест.

Брайль — это тип двоичного кода, который широко используется слепыми людьми для чтения и записи на ощупь, названный по имени его создателя Луи Брайля. Эта система состоит из сеток по шесть точек в каждой, по три на столбец, в котором каждая точка имеет два состояния: приподнятые или углубленные. Различные комбинации точек способны представлять все буквы, цифры и знаки пунктуации.

Американский стандартный код для обмена информацией (ASCII) использует 7-битный двоичный код для представления текста и других символов в компьютерах, оборудовании связи и других устройствах. Каждой букве или символу присваивается номер от 0 до 127.

Двоично-кодированное десятичное значение или BCD — это двоичное кодированное представление целочисленных значений, которое использует 4-битный граф для кодирования десятичных цифр. Четыре двоичных бита могут кодировать до 16 различных значений.

В номерах с кодировкой BCD только первые десять значений в каждом полубайте являются корректными и кодируют десятичные цифры с нулем, через девять. Остальные шесть значений являются некорректными и могут вызвать либо машинное исключение, либо неуказанное поведение, в зависимости от компьютерной реализации арифметики BCD.

Арифметика BCD иногда предпочтительнее числовых форматов с плавающей запятой в коммерческих и финансовых приложениях, где сложное поведение округления чисел является нежелательным.

Применение

Большинство современных компьютеров используют программу бинарного кода для инструкций и данных. Компакт-диски, DVD-диски и диски Blu-ray представляют звук и видео в двоичной форме. Телефонные звонки переносятся в цифровом виде в сетях междугородной и мобильной телефонной связи с использованием импульсно-кодовой модуляции и в сетях передачи голоса по IP.


Ариабхата
Кириллическая
Греческая Грузинская
Эфиопская
Еврейская
Акшара-санкхья Другие Вавилонская
Египетская
Этрусская
Римская
Дунайская Аттическая
Кипу
Майяская
Эгейская
Символы КППУ Позиционные , , , , , , , , , , Нега-позиционная Симметричная Смешанные системы Фибоначчиева Непозиционные Единичная (унарная)

Двоичная система счисления - позиционная система счисления с основанием 2. Благодаря непосредственной реализации в цифровых электронных схемах на логических вентилях , двоичная система используется практически во всех современных компьютерах и прочих вычислительных электронных устройствах .

Двоичная запись чисел

В двоичной системе счисления числа записываются с помощью двух символов (0 и 1 ). Чтобы не путать, в какой системе счисления записано число, его снабжают указателем справа внизу. Например, число в десятичной системе 5 10 , в двоичной 101 2 . Иногда двоичное число обозначают префиксом 0b или символом & (амперсанд) , например 0b101 или соответственно &101 .

В двоичной системе счисления (как и в других системах счисления, кроме десятичной) знаки читаются по одному. Например, число 101 2 произносится «один ноль один».

Натуральные числа

Натуральное число, записываемое в двоичной системе счисления как (a n − 1 a n − 2 … a 1 a 0) 2 {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}} , имеет значение:

(a n − 1 a n − 2 … a 1 a 0) 2 = ∑ k = 0 n − 1 a k 2 k , {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}=\sum _{k=0}^{n-1}a_{k}2^{k},}

Отрицательные числа

Отрицательные двоичные числа обозначаются так же как и десятичные: знаком «−» перед числом. А именно, отрицательное целое число, записываемое в двоичной системе счисления (− a n − 1 a n − 2 … a 1 a 0) 2 {\displaystyle (-a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}} , имеет величину:

(− a n − 1 a n − 2 … a 1 a 0) 2 = − ∑ k = 0 n − 1 a k 2 k . {\displaystyle (-a_{n-1}a_{n-2}\dots a_{1}a_{0})_{2}=-\sum _{k=0}^{n-1}a_{k}2^{k}.}

дополнительном коде .

Дробные числа

Дробное число, записываемое в двоичной системе счисления как (a n − 1 a n − 2 … a 1 a 0 , a − 1 a − 2 … a − (m − 1) a − m) 2 {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0},a_{-1}a_{-2}\dots a_{-(m-1)}a_{-m})_{2}} , имеет величину:

(a n − 1 a n − 2 … a 1 a 0 , a − 1 a − 2 … a − (m − 1) a − m) 2 = ∑ k = − m n − 1 a k 2 k , {\displaystyle (a_{n-1}a_{n-2}\dots a_{1}a_{0},a_{-1}a_{-2}\dots a_{-(m-1)}a_{-m})_{2}=\sum _{k=-m}^{n-1}a_{k}2^{k},}

Сложение, вычитание и умножение двоичных чисел

Таблица сложения

Пример сложения «столбиком» (десятичное выражение 14 10 + 5 10 = 19 10 в двоичном виде выглядит как 1110 2 + 101 2 = 10011 2):

Пример умножения «столбиком» (десятичное выражение 14 10 * 5 10 = 70 10 в двоичном виде выглядит как 1110 2 * 101 2 = 1000110 2):

Начиная с цифры 1 все цифры умножаются на два. Точка, которая стоит после 1, называется двоичной точкой.

Преобразование двоичных чисел в десятичные

Допустим, дано двоичное число 110001 2 . Для перевода в десятичное запишите его как сумму по разрядам следующим образом:

1 * 2 5 + 1 * 2 4 + 0 * 2 3 + 0 * 2 2 + 0 * 2 1 + 1 * 2 0 = 49

То же самое чуть иначе:

1 * 32 + 1 * 16 + 0 * 8 + 0 * 4 + 0 * 2 + 1 * 1 = 49

Можно записать это в виде таблицы следующим образом:

512 256 128 64 32 16 8 4 2 1
1 1 0 0 0 1
+32 +16 +0 +0 +0 +1

Двигайтесь справа налево. Под каждой двоичной единицей напишите её эквивалент в строчке ниже. Сложите получившиеся десятичные числа. Таким образом, двоичное число 110001 2 равнозначно десятичному 49 10 .

Преобразование дробных двоичных чисел в десятичные

Нужно перевести число 1011010,101 2 в десятичную систему. Запишем это число следующим образом:

1 * 2 6 + 0 * 2 5 + 1 * 2 4 + 1 * 2 3 + 0 * 2 2 + 1 * 2 1 + 0 * 2 0 + 1 * 2 −1 + 0 * 2 −2 + 1 * 2 −3 = 90,625

То же самое чуть иначе:

1 * 64 + 0 * 32 + 1 * 16 + 1 * 8 + 0 * 4 + 1 * 2 + 0 * 1 + 1 * 0,5 + 0 * 0,25 + 1 * 0,125 = 90,625

Или по таблице:

64 32 16 8 4 2 1 0.5 0.25 0.125
1 0 1 1 0 1 0 , 1 0 1
+64 +0 +16 +8 +0 +2 +0 +0.5 +0 +0.125

Преобразование методом Горнера

Для того, чтобы преобразовывать числа из двоичной в десятичную систему данным методом, надо суммировать цифры слева направо, умножая ранее полученный результат на основу системы (в данном случае 2). Методом Горнера обычно переводят из двоичной в десятичную систему. Обратная операция затруднительна, так как требует навыков сложения и умножения в двоичной системе счисления.

Например, двоичное число 1011011 2 переводится в десятичную систему так:

0*2 + 1 = 1
1*2 + 0 = 2
2*2 + 1 = 5
5*2 + 1 = 11
11*2 + 0 = 22
22*2 + 1 = 45
45*2 + 1 = 91

То есть в десятичной системе это число будет записано как 91.

Перевод дробной части чисел методом Горнера

Цифры берутся из числа справа налево и делятся на основу системы счисления (2).

Например 0,1101 2

(0 + 1 )/2 = 0,5
(0,5 + 0 )/2 = 0,25
(0,25 + 1 )/2 = 0,625
(0,625 + 1 )/2 = 0,8125

Ответ: 0,1101 2 = 0,8125 10

Преобразование десятичных чисел в двоичные

Допустим, нам нужно перевести число 19 в двоичное. Вы можете воспользоваться следующей процедурой:

19/2 = 9 с остатком 1
9/2 = 4 c остатком 1
4/2 = 2 без остатка 0
2/2 = 1 без остатка 0
1/2 = 0 с остатком 1

Итак, мы делим каждое частное на 2 и записываем остаток в конец двоичной записи. Продолжаем деление до тех пор, пока в частном не будет 0. Результат записываем справа налево. То есть нижняя цифра (1) будет самой левой и т. д. В результате получаем число 19 в двоичной записи: 10011 .

Преобразование дробных десятичных чисел в двоичные

Если в исходном числе есть целая часть, то она преобразуется отдельно от дробной. Перевод дробного числа из десятичной системы счисления в двоичную осуществляется по следующему алгоритму:

  • Дробь умножается на основание двоичной системы счисления (2);
  • В полученном произведении выделяется целая часть, которая принимается в качестве старшего разряда числа в двоичной системе счисления;
  • Алгоритм завершается, если дробная часть полученного произведения равна нулю или если достигнута требуемая точность вычислений. В противном случае вычисления продолжаются над дробной частью произведения.

Пример: Требуется перевести дробное десятичное число 206,116 в дробное двоичное число.

Перевод целой части дает 206 10 =11001110 2 по ранее описанным алгоритмам. Дробную часть 0,116 умножаем на основание 2, занося целые части произведения в разряды после запятой искомого дробного двоичного числа:

0,116 2 = 0 ,232
0,232 2 = 0 ,464
0,464 2 = 0 ,928
0,928 2 = 1 ,856
0,856 2 = 1 ,712
0,712 2 = 1 ,424
0,424 2 = 0 ,848
0,848 2 = 1 ,696
0,696 2 = 1 ,392
0,392 2 = 0 ,784
и т. д.

Таким образом 0,116 10 ≈ 0,0001110110 2

Получим: 206,116 10 ≈ 11001110,0001110110 2

Применения

В цифровых устройствах

Двоичная система используется в цифровых устройствах , поскольку является наиболее простой и соответствует требованиям:

  • Чем меньше значений существует в системе, тем проще изготовить отдельные элементы, оперирующие этими значениями. В частности, две цифры двоичной системы счисления могут быть легко представлены многими физическими явлениями: есть ток (ток больше пороговой величины) - нет тока (ток меньше пороговой величины), индукция магнитного поля больше пороговой величины или нет (индукция магнитного поля меньше пороговой величины) и т. д.
  • Чем меньше количество состояний у элемента, тем выше помехоустойчивость и тем быстрее он может работать. Например, чтобы закодировать три состояния через величину напряжения, тока или индукции магнитного поля, потребуется ввести два пороговых значения и два компаратора ,

В вычислительной технике широко используется запись отрицательных двоичных чисел в дополнительном коде . Например, число −5 10 может быть записано как −101 2 но в 32-битном компьютере будет храниться как 2 .

В английской системе мер

При указании линейных размеров в дюймах по традиции используют двоичные дроби, а не десятичные, например: 5¾″, 7 15 / 16 ″, 3 11 / 32 ″ и т. д.

Обобщения

Двоичная система счисления является комбинацией двоичной системы кодирования и показательной весовой функции с основанием равным 2. Следует отметить, что число может быть записано в двоичном коде , а система счисления при этом может быть не двоичной, а с другим основанием. Пример: двоично-десятичное кодирование , в котором десятичные цифры записываются в двоичном виде, а система счисления - десятичная.

История

  • Полный набор из 8 триграмм и 64 гексаграмм , аналог 3-битных и 6-битных цифр, был известен в древнем Китае в классических текстах книги Перемен . Порядок гексаграмм в книге Перемен , расположенных в соответствии со значениями соответствующих двоичных цифр (от 0 до 63), и метод их получения был разработан китайским учёным и философом Шао Юн в XI веке . Однако нет доказательств, свидетельствующих о том, что Шао Юн понимал правила двоичной арифметики, располагая двухсимвольные кортежи в лексикографическом порядке .
  • Наборы, представляющие собой комбинации двоичных цифр, использовались африканцами в традиционных гаданиях (таких как Ифа) наряду со средневековой геомантией .
  • В 1854 году английский математик Джордж Буль опубликовал знаковую работу, описывающую алгебраические системы применительно к логике , которая в настоящее время известна как Булева алгебра или алгебра логики . Его логическому исчислению было суждено сыграть важную роль в разработке современных цифровых электронных схем.
  • В 1937 году Клод Шеннон представил к защите кандидатскую диссертацию Символический анализ релейных и переключательных схем в , в которой булева алгебра и двоичная арифметика были использованы применительно к электронным реле и переключателям. На диссертации Шеннона по существу основана вся современная цифровая техника .
  • В ноябре 1937 года Джордж Штибиц , впоследствии работавший в Bell Labs , создал на базе реле компьютер «Model K» (от англ. «K itchen», кухня, где производилась сборка), который выполнял двоичное сложение. В конце 1938 года Bell Labs развернула исследовательскую программу во главе со Штибицом. Созданный под его руководством компьютер, завершённый 8 января 1940 года, умел выполнять операции с комплексными числами . Во время демонстрации на конференции American Mathematical Society в Дартмутском колледже 11 сентября 1940 года Штибиц продемонстрировал возможность посылки команд удалённому калькулятору комплексных чисел по телефонной линии с использованием телетайпа . Это была первая попытка использования удалённой вычислительной машины посредством телефонной линии. Среди участников конференции, бывших свидетелями демонстрации, были Джон фон Нейман , Джон Мокли и Норберт Винер , впоследствии писавшие об этом в своих мемуарах.
  • На фронтоне здания (бывшего Вычислительного Центра СО АН СССР) в Новосибирском Академгородке присутствует двоичное число 1000110, равное 70 10 , что символизирует дату постройки здания (

Всем известно, что компьютеры могут выполнять вычисления с большими группами данных на огромной скорости. Но не все знают, что эти действия зависят всего от двух условий: есть или нет ток и какое напряжение.

Каким же образом компьютер умудряется обрабатывать такую разнообразную информацию?
Секрет заключается в двоичной системе исчисления. Все данные поступают в компьютер, представленные в виде единиц и нулей, каждому из которых соответствует одно состояние электропровода: единицам - высокое напряжение, нулям - низкое или же единицам - наличие напряжения, нулям - его отсутствие. Преобразование данных в нули и единицы называется двоичной конверсией, а окончательное их обозначение - двоичным кодом.
В десятичном обозначении, основанном на десятичной системе исчисления, которая используется в повседневной жизни, числовое значение представлено десятью цифрами от 0 до 9, и каждое место в числе имеет ценность в десять раз выше, чем место справа от него. Чтобы представить число больше девяти в десятичной системе исчисления, на его место ставится ноль, а на следующее, более ценное место слева - единица. Точно так же в двоичной системе, где используются только две цифры - 0 и 1, каждое место в два раза ценнее, чем место справа от него. Таким образом, в двоичном коде только ноль и единица могут быть изображены как одноместные числа, и любое число, больше единицы, требует уже два места. После ноля и единицы следующие три двоичных числа это 10 (читается один-ноль) и 11 (читается один-один) и 100 (читается один-ноль-ноль). 100 двоичной системы эквивалентно 4 десятичной. На верхней таблице справа показаны другие двоично-десятичные эквиваленты.
Любое число может быть выражено в двоичном коде, просто оно займет больше места, чем в десятичном обозначении. В двоичной системе можно записать и алфавит, если за каждой буквой закрепить определенное двоичное число.

Две цифры на четыре места
16 комбинаций можно составить, используя темные и светлые шары, комбинируя их в наборах из четырех штук Если темные шары принять за нули, а светлые за единицы, то и 16 наборов окажутся 16-единичным двоичным кодом, числовая ценность которого составляет от нуля до пяти (см. верхнюю таблицу на стр. 27). Даже с двумя видами шаров в двоичной системе можно построить бесконечное количество комбинаций, просто увеличивая число шариков в каждой группе - или число мест в числах.

Биты и байты

Самая маленькая единица в компьютерной обработке, бит - это единица данных, которая может обладать одним из двух возможных условий. К примеру, каждая из единиц и нулей (справа) означает 1 бит. Бит можно представить и другими способами: наличием или отсутствием электрического тока, дырочкой и ее отсутствием, направлением намагничивания вправо или влево. Восемь битов составляют байт. 256 возможных байтов могут представить 256 знаков и символов. Многие компьютеры обрабатывают байт данных одновременно.

Двоичная конверсия. Четырехцифровой двоичный код может представить десятичные числа от 0 до 15.

Кодовые таблицы

Когда двоичный код используется для обозначения букв алфавита или пунктуационных знаков, требуются кодовые таблицы, в которых указано, какой код какому символу соответствует. Составлено несколько таких кодов. Большинство ПК приспособлено под семицифровой код, называемый ASCII, или американский стандартный код для информационного обмена. На таблице справа показаны коды ASCII для английского алфавита. Другие коды предназначаются для тысяч символов и алфавитов других языков мира.

Часть таблицы кода ASCII